2024初中数学工作总结(通用35篇)
2024初中数学工作总结 篇1
对于本学期教研组工作,简要总结如下:
一、工作进展情况
本学期我校数学组成员由上学期的7人减为6人,虽然人数减少了,但是工作量并没有减轻,反而加大了,同时,工作质量也没有因为人员变动降低了,反而还在原有的基础上提升了。
总而言之,本学期的教研工作进展顺利,不但超额完成了学期初工作计划内的事情,还圆满完成了校级、县级甚至是市级安排的临时任务。
二、主要成绩
1.接待实习生及置换生两批次共计3人次。
2.批阅教案800余次(平均每位教师每周7节次)。
3.集体备课次总计12次,平均每位教师主备2次。
4.公开课达9次,包括实习生在内,平均每人一次。
5.参与网络培训、校内外外出培训活动达29人次,其中网络培训达18次,平均每人三次(含国家级西南大学中小学教师学科培训6人次,市级远程培训之“评好课”专题6人次、县级信息技术培训6人次),校外培训学习4人次,省级2人次,县级2人次;校内培训7人次。
6.参与校内外听评课100余次,平均每人进20余次。
7.参加校内课赛1人次,获奖1人次。
8.开展学生活动两项,分别是数学基础知识竞赛和数学手抄报大赛,数学基础知识竞赛覆盖全校学生,参与度达100%,发放奖金800余元;数学手抄报参与学生80余人,参与度近20%,发放奖金400余元。
三、经验及体会
经验总结:教师是知识的传承者,教师的素养决定着学生的未来,因此,本学期在教研工作方面,我主要着手加强教师专业素养的提高,严格按照上级要求对本组教师的教案进行认真细致的批阅,认真组织本组教师积极开张集体备课活动以及听评课活动。而兴趣是学生学习最好的老师,因此,我又通过开张数学知识竞赛、数学手抄报等活动激发了学生学习数学的热情,为学生创造了良好的数学学习氛围。
体会:教师专业素养的提高与业务水平的提高,有利于学生在数学课堂上听到更精彩生动的课,学生学习兴趣的提高又可以影响教师教育教学的积极心态,因此,两者是相辅相成,互相促进的,往后还必须加这方面的研究。
四、存在问题
1.组内成员的教学理论水平曾次不齐,导致全校数学教育教学质量在不同年级,不同班级之间都存在差异。
2.组内成员的工作积极性没有完全调动,尽管有所改观,但仍需努力。
3.组内成员的专业成长速度缓慢,课后对专业知识的自我提升完善观念欠缺。
五、今后努力的方向
1.继续积极开展各项师生活动,丰富师生课余生活。
2.继续落实各级相关要求,努力完善组内各项规章制度。
3.加强组内成员的理论学习,不断提高组内成员的业务水平。
4.努力创建和谐平等的教学工作环境,加强与其他学科教师的沟通协作。
5.努力争取各种大小培训活动,强化队伍建设。
2024初中数学工作总结 篇2
转眼的时间,我在教师的岗位上又走过了半年。追忆往昔,展望未来,为了更好的总结经验教训无愧于“合格的人民教师”这一称号,我现将20xx-20xx年度第一学期工作情况总结如下:
一、师德方面:加强修养,塑造师德
我始终认为作为一名教师应把“师德”放在一个重要的位置上,因为这是教师的立身之本。“学高为师,身正为范”,这个道理古今皆然。从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。我始终坚持给学生一个好的师范,希望从我这走出去的都是合格的学生,都是一个个大写的“人”。为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,课余时间我阅读了大量的书籍,不断提高自己水平。今后我将继续加强师德方面的修养,力争在这一方面有更大的提高。
二、教学方面:虚心求教,强化自我
担任七年级两个班的数学教学的工作任务是艰巨的,在实际工作中,那就得实干加巧干初中数学教师工作总结20xx-范文大全初中数学教师工作总结20xx-范文大全。对于一名数学教师来说,加强自身业务水平,提高教学质量无疑是至关重要的。随着岁月的流逝,伴着我教学天数的增加,我越来越感到我知识的匮乏,经验的缺少。面对讲台下那一双双渴望的眼睛,每次上课我都感到自己责任之重大。为了尽快充实自己,使自己教学水平有一个质的飞跃,我从以下几个方面对自身进行了强化。
首先是从教学理论和教学知识上。我借阅大量有关教学理论和教学方法的书籍,对于里面各种教学理论和教学方法尽量做到博采众家之长为己所用!。在让先进的理论指导自己的教学实践的同时,我也在一次次的教学实践中来验证和发展这种理论。
其次是从教学经验上。由于自己教学经验有限,有时还会在教学过程中碰到这样或那样的问题而不知如何处理。因而我虚心向老教师学习,力争从他们那里尽快增加一些宝贵的教学经验。我个人应付和处理课堂各式各样问题的能力大大增强。
最后我做到“不耻下问” 教学互长。从另一个角度来说,学生也是老师的。由于学生接受新知识快,接受信息多,因此我从和他们的交流中亦能丰富我的教学知识。
为了不辜负领导的信任和同学的希望,我决心尽我最大所能去提高自身水平,争取较出色的完成教学。为此,我一方面下苦功完善自身知识体系,打牢基础知识,使自己能够比较自如的进行教学;另一方面,继续向其他教师学习,抽出业余时间向具有丰富教学经验的老师学习。对待课程,虚心听取他们意见,备好每一节课;仔细听课,认真学习他们上课的安排和技巧。这半年来,通过认真学习教学理论,刻苦钻研教学,虚心向老教师学习,我自己感到在教学方面有了较大的提高。学生的成绩也证实了这一点,我教的班级在历次考试当中都取的了较好的成绩,。
三、 考勤纪律方面
我严格遵守学校的各项规章制度,不迟到、不早退、有事主动请假。在工作中,尊敬领导、团结同事,能正确处理好与领导同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,毫不松懈地培养自己的综合素质和能力。
我担任的两个班级的数学教学工作取得了一定的成绩,我将继续努力,取得更优异的教学成绩,为学校争光!
2024初中数学工作总结 篇3
这学期,一个全新的教育理念生本教育进入了我们的视线,将生本教育融入到高效课堂中来,通过这段时间的摸索和探索,我对实施高效生本课堂做如下总结。
一、学生们得到了释放
“生本教育”要求教师放弃讲解,而是抛出有价值的问题让学生你一句我一句的讨论,体现出学生是学习的主人。在课堂上给学生充足的时间,让孩子们自主交流、展示成果、互相质疑,在合作、交流、质疑中主动学习,获取知识和解决问题的能力,经过自己的实践获得的知识,他们特别有成就感,自信心增强,在这种氛围中学习,孩子们很放松,他们得到了释放,在课堂上很放的开,对学习更加感兴趣了。其中,我们班的崔新伟同学的变化就很明显,原来的时候他在课堂上属于不主动积极回答问题的那类学生,学习的参与积极性不高,但自从我们开始让学生们一小组合作为单位讨论、探究并走向讲台当小老师为大家讲题后,他像换了一个人似的,积极性特别高。看到同学们的变化,我特别高兴特别激动。
二、老师的角色得到翻天覆地的变化
关于这一点我深有体会,自从实施了高效生本课堂,我才意识到我这样的老师太强势了,而且我发现在教学中我们太自作多情了,很多时候我们一厢情愿承担了许多工作,渴望孩子们按照我们设计的方向去发展,但到最后却往往是我们自己失败。
三、遇到的问题
在高效生本课堂中,我发现孩子们都是自信的、快乐的,当学生从自己研究和探索中发现规律,找到解决问题的方法的时候,我感到非常的意外和喜悦。但是,有时候还存在一些问题,孩子们怎么这么不合作?语言表达能力怎么这么欠缺?每次做总结时怎么总是说不到点子上,还这么罗嗦?实际上,他们的现状都非常正常,因为在前期,我们并没有在课堂上有意识的去培养孩子的.这些方面的好习惯,现在,我们刚刚接触生本教育,作为老师是新手,很多地方作的都不够,又何况是孩子们呢?但是,通过他们的变化,发现他们在学习上冲劲十足,自主意识很强,慢慢有了合作意识,更多的是学习上的创新意识,我深切的意识到,孩子们的潜力是无穷无尽的。
2024初中数学工作总结 篇4
我是一名普普通通的中学数学教师,我觉得作为一个好老师,首先要爱他们,包容他们,我相信好学生是夸出来的,我不是神,只是一个普通的人,或许在工作中也有这样那样的失误,但我会努力去关爱他们。对如何有效教学形成了独特的见解。
1、培养积极探究习惯,发展求异思维能力。
在教学中,构建数感的理解、体会,要引导学生仁者见仁,智者见智,大胆,各抒己见。在思考辩论中,教师穿针引线,巧妙点拨,以促进学生在激烈的争辩中,在思维的碰撞中,得到语言的升华和灵性的开发。教师应因势利导,让学生对问题充分思考后,学生根据已有的经验,知识的积累等发表不同的见解,对有分歧的问题进行辩论。
通过辩论,让学生进一步认识了自然,懂得了知识无穷的,再博学的人也会有所不知,体会学习是无止境的道理。这样的课,课堂气氛很活跃,其间,开放的课堂教学给了学生更多的自主学习空间,教师也毫不吝惜地让学生去思考,争辩,真正让学生在学习中体验到了自我价值。这一环节的设计,充分让学生表述自己对数学的理解和感悟,使学生理解和表达,输入和输出相辅相成,真正为学生的学习提供了广阔的舞台。
2、注意新课导入新颖。
“兴趣是最好的老师”。在教学中,我十分注重培养和激发学生的学习兴趣。譬如,在导入新课,让学生一上课就能置身于一种轻松和谐的环境氛围中,而又不知不觉地学数学。我们要根据不同的课型,设计不同的导入方式。可以用多媒体展示课文的画面让学生进入情景;也可用讲述故事的方式导入,采用激发兴趣、设计悬念……引发设计,比起简单的讲述更能激发学生的灵性,开启学生学习之门。
虽然在工作中我们取得了一些成绩,但是这离我们所追求的目标还有很长的路要走。集体备课、研修活动培养了教师理解和把握教材的能力,唤醒了教师推进新课程的意识,中学数学研修正在逐渐由“经验型”向“反思型”和“研究型”群体发展。在我们看来,课改与教研是一个永恒不变的主题,我们还要把教后记只注重对具体实践结果的粗浅回顾,提高到对实践本身的深入反思,使“研”更有深度;同时有效地利用数学教师的博客,与同行交流思想,为学生提供服务!
2024初中数学工作总结 篇5
最简单的解释就是,不等式是指用不等号可以将两个解析式连接起来所成的式子。
1.概念:在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。
2、分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)
“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
我们大家在判定不等式时要记得,在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。
2024初中数学工作总结 篇6
一、角的定义
“静态”概念:有公共端点的两条射线组成的图形叫做角。
“动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。
如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。
二、角的换算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、补角的概念和性质:
概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。
如果两个角的和是一个直角,那么这两个角叫做互为余角。
说明:互补、互余是指两个角的数量关系,没有位置关系。
性质:同角(或等角)的余角相等;
同角(或等角)的补角相等。
四、角的比较方法:
角的大小比较,有两种方法:
(1)度量法(利用量角器);
(2)叠合法(利用圆规和直尺)。
五、角平分线:从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的平分线。
常见考法
(1)考查与时钟有关的问题;(2)角的计算与度量。
误区提醒
角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。
【典型例题】(20xx云南曲靖)从3时到6时,钟表的时针旋转角的度数是
【答案】3时到6时,时针旋转的是一个周角的1/4,故是90度,本题选C.
2024初中数学工作总结 篇7
20xx年12月17到19号,我区数学课堂大比武活动在祝阳二中举行,3天的比赛时间里,18位数学老师为我们展示了18节精彩纷呈的数学课堂。师生之间和谐默契的配合,科学合理的教学流程,良好的教学效果,无不体现着我区初中数学教师较高的专业水平。虽然是赛课,但老师们的课堂少了花架子,实实在在的专注于创设适合学生认知规律的学习背景,新课程的理念已深深的植入我区数学教师的内心,学生为课堂主体得到了很好的落实。3天的听课,使我收获很大,先将个人感想总结如下:
3天的教学内容如下:
12月17号:八年级上册6。1第二课时不等式的基本性质12月18号:八年级上册6。2第一课时不等式的解和解集12月19号:八年级上册6。2第二课时一元一次不等式及解法我想以课堂流程为主线,从以下几个方面进行总结:
一、学习目标:
使用学案的老师都将学习目标放在了学案的第一环节,在讲课过程中有3位老师一开始就出示学习目标,有5位老师放在导课之后出示目标,有2位老师放在课堂小结前出示学习目标,有八位老师没有提及学习目标。出示目标的老师方式也不一样,有的老师让学生读一遍,有的老师自己读完,有的老师象征性的突出这一环节,马上带过。从效果看,出示目标对提高课堂效益没有太大意义,尤其是放在课堂的开始出示目标,学生对本节课的数学概念、方法,思想并不熟悉,学生读过之后就会忘记,学生也不会时刻想着学习目标指导自己学习,时间白白浪费。从设计目标内容看,多数老师设计学习目标科学合理,但也存在一些问题:一是目标表述笼统,如“培养学生自主探索与合作交流的能力”,要细化为:会与同伴交流解题感想。如“提高学生分析问题解决问题的能力,培养学生的学习兴趣”,这是教学目标,不是学习目标,那节课不都有这样的目标,成万能目标了;二是学习目标中不能出现“培养学生合情推理能力”这样的目标,谁培养,是老师,老师是主语,其实是教学目标与学习目标混了。
二、课堂导入
参加讲课的老师使用了三种导课方式:
1、复习导课。复习等式的基本性质得到不等式的基本性质;复习方程的解得到不等式的解;复习一元一次方程的定义得到一元一次不等式的定义;复习一元一次方程的解法步骤得到一元一次不等式的解法步骤。
2、探究法导课。仿照等式的基本性质2,把不等式的两边同乘以或除以同一个数,让学生个人选择一些数代入研究,发现有三种情况:不等号方向不变(两边同乘以或除以一个正数);不等号变成等号(两边同乘以零);不等号方向改变(两边同乘以或除以一个负数)。实验得到了结论。
3、创设情境导课。情景导航中的飞机最多还能装载多少顶帐篷;面包车限载7人;高速路限速100迈;至少答对几道题。贴近生活激发兴趣。
第一天6位老师都从回顾等式的基本性质入手,引入不等式的基本性质的探究,为相似知识之间的类比做好铺垫,导课方式合情合理,效果不错。
第二天学习不等式的解及解集,教材设计了有关直升飞机运载灾物资的情景,有两位老师使用了这个情景导入新课;汶口一中的范义坚老师以乘坐的面包车来参加赛课,面包车的载客量和在行程中看到的限速牌的情景导入新课;李新刚老师设计了购物情景导入新课;十四中的赵培义老师设计了竞赛得分的情景导入新课;一位老师没有设计导课环节,直接给出自学指导,学生自学。
第三天21中的高凤老师设计了一个关于读书的情景导入课题,另有3位老师从回顾一元一次方程入手,引入课题;两位老师没有设计课堂导入环节,直接出示探究指导,让学生自主学习新知识。
从效果看,课堂的开始设计情景导入环节,这是师生交流的开始,尤其是赛课,面对的是陌生的学生,设计一个学生熟悉或是感兴趣的情景,对于提升学生的学习热情,拉近师生之间的距离,活跃课堂气氛,激发学生的求知欲望很有效果。但是在创设情景时,不要形式上的贴近现实,如导课时有教师“如果我们学校捐赠10顶帐篷,这架飞机能一次运走吗?”,看上去联系我们学校了,贴近我们了,岂不知我们学校哪有帐篷,又扯远了
三、探究新知环节
参加讲课的老师非常重视学生的自主学习、合作探究的学习方式,设计了非常生动的探究情景,比较合理的自学指导,指导学生如何小组探究、如何反馈,如何评价。此环节充分体现了我区初中教师对新课改理念的理解,老师们已把传统的填鸭式教学模式彻底抛弃,新的探究式教学已深入人心。实验中学的董海涛老师在教授不等式的基本性质时,首先回顾等式的基本性质,然后出示一组不等式,学生类比等式的基本性质得到了不等式的基本性质1,然后董老师大胆让学生猜想不等式是否还有其他性质,学生类比猜想“不等式的两边同时乘以或除以一个不为零的数或整式,不等号的方向不变”这一看似合理但有错误的结论。董老师告诉学生,猜想不一定正确,猜想后还需有科学合理的推理、论证才可以判断它是否正确。(这一步让学生大胆去猜想非常智慧,为学生自然类比出性质提供了舞台,当然是在学生不能提前看书的基础上),董老师鼓励学生想办法验证自己的猜想。学生运用代入不同数值的方法发现,同乘正数和负数是不同的,乘以负数,不等号的方向要改变,所以对于乘法,要分类讨论,学生得到了不等式2和3。这种设计,符合知识的发展,生成规律,即让学生自主掌握了知识,又让学生学会了很重要的解决问题的方法(对比一些老师的让学生自主学习,那数学的“过程”自然也就淹没了,学生不经历这一过程,得到的知识浅多了)。十五中的邱玉荣老师在教授不等式的解法两个例题时,通过较为简单的例题1让学生感知类比方程的解法可以求不等式的解集,邱老师放手让学生自己试着解例题2,相当多的学生能成功的得到不等式的正确解集,且步骤合理。邱老师让学生通过板演展示,学生评价等方式完善方法和步骤,达到让所有学生掌握的目的。这种方式,能让中等以上的学生通过自主学习,感受到成功的乐趣,也体现了邱老师分层教学的理念。
出现的问题
1、不等式基本性质的探究过程大体分几种情况:
(1)性质1、2、3一块得出;
(2)性质1、2、3分别得出;
(3)性质1、2一块得出,然后探究性质3;
(4)性质1先得出,然后探究性质2、3一块得出;
通过课堂观察,第四种情况符合知识发生发展规律,符合学生认识规律,自然生成,其他均有人为硬性的痕迹,是按照成人的思维来设计,不够自然流畅。
另外,性质1的探究过程没有按>0,<0研究,性质2为什么没按呢?再就是缺乏对“等于零”的情形的研究,分析不全面。
再有,教师安排学生自学课本和学案,一定时间后让学生回答性质1、2、3,就算是对性质的探究过程了。让学生看课本总结性质1、2、3,流于形式,没有探究的味,假探究,学生看课本总结那不是鼓励学生背课本、读原文,自己总结么?教师的引导有如何体现??2、合作交流的时机不当
一上课,出示引例后问“直升飞机最多能装载多少顶帐篷?”,此问题一出,立即让学生进行交流讨论,是时机吗?有必要吗?教师要思考“什么时候让学生合作交流?”
3、有的老师对小组合作只作为一个形式运用,没有考虑实际价值。如没有设置探究解决的问题或设置的问题很随便。一位老师让学生在数轴上画不等式x<2的解集时,问学生2在数轴化实点还是虚点,学生集体回答画虚点,老师又说“同学们讨论一下为什么画虚点?”这样的讨论有点多余,因为这是前一节课学生熟练掌握的内容;有的老师在学生合作学习开始前没有交代好方法和注意事项,小组合作学习开始后不停地补充,这样就很容易打断学生的思路。有的老师没有给足够的时间合作学习,很短的时间后就让学生反馈或自己进行总结,这样就达不到小组合作解决问题的目的。有的老师在反馈小组合作学习的成果时,只选择组长来说,这样不能调动所有学生的学习热情;
四、训练巩固环节所有讲课的老师都特别重视训练巩固,精心设计了形式多样,紧扣当节课所学知识点,易于掌握重点和突破难点的训练题组。老师让学生通过自主练习,暴露出存在的问题,然后通过形式丰富的反馈加以纠正。
这一环节存在的问题有:
1、有的老师设计的题组难度跨度大,没有充分考虑学生的认知水,讲解例题之前最好先做一些基础性的题目,为例题的顺利解决做一个台阶;2、教师讲评前要仔细审查学生板演的情况
如学生板书“x—5<—3”,把“—”号看做乘号“●”了,但按此乘号“●”做得很好,教师讲评时不问青红皂白,直接批死,造成“冤假错案”,其实该生是平时学习不错的优秀生,致使该学生看错了,而且看错的原因也是教师的课件不清楚所致。
3、在反馈环节,老师指名课代表、班长、组长等,因为他们大都是优等生,样本不具有代表性,不能反映出学生存在的问题;学生板演时,老师不敢让学生暴露错误,学生一旦出错,老师马上对其订正,错误没能呈献给所有学生,具有代表性的错误不能有效订正。让学生在数轴上表示解集时,应让学生自己画数轴,自己标数字,教师一般不要提前画好数轴,只等学生来完成剩下的任务
4、拓展不当,如拓展“已知x≥m且x为正数,确定实数m的范围。”,与本节课时内容关联性不强。
5、在数轴上表示不等式的解集时,有教师在数轴与所标线内涂上阴影,意指阴影部分是解集,与课本不符。
五、课堂小结
在课堂小结环节,老师们大都提出“本节课你有什么收获”或“本节课你学到了什么”这样的问题,然后让学生总结,学生大都总结出一节课所学到的知识点,以及在做题中出现的错误进行总结。有两位老师的总结涉及到了当堂课的数学方法和思想。老师们注重了所授知识的概括、归纳及总结,对解决问题的方法,对所学知识的应用及价值的总结有所淡化,也没有涉及到对学生情感、学习态度和存在问题的总结。
六、学案
讲课的18位教师,有16位老师使用了学案,但学案的设计质量参差不齐,有的学案个个环节齐全,重点突出学习指导,训练题组有创新,当堂检测设计科学合理。印象最深的是道朗一中的李新刚老师设计的学案,征得李老师的同意后将他设计的学案附在后面,请大家参考。
学案存在的问题有:
1、1、有的学案没有标注课题,显得不完整
2、2、有的老师将学案设计成训练题,没有体现上课的过程
3、3、有的老师设计的学案设计成了教案的`形式,出现教学目标、教学过程等词语,学案设计不规范
4、4、有的学案内容空洞,没有实用性,老师发给学生学案后,没有应用。
七、关于达标检测
18位老师都设计了当堂达标这一环节,达标检测题进行了精心设计,题型包括选择、填空、解答与计算,题型丰富。特别是增加了选择题的比重,中考选择题分值占50%,老师们着眼中考,从这里看出我区数学老师丰富的教学经验。
存在问题:
有的老师设计的题量太多,有一位老师设计了11道题目;有个别老师设计的题目难度偏大;有的老师因课堂时间安排不合理,课堂检测没有完成,导致没有反馈和订正,有很多老师因前面的环节不紧凑,导致拖堂,有的拖堂达到近10分钟。
八、课件
讲课的18位老师都使用了教学课件,老师的的课件制作的各有特色,能极大地提高课堂效益,多数老师在使用过程中得心应手,说明我区的数学课堂课件的使用已非常普及。
存在问题:
个别老师操作不熟练,不能及时翻页、跳页;过早地呈现后面的内容,退不回去了;对比度不强,许多文字、符号看不清。
2024初中数学工作总结 篇8
1、正数和负数的有关概念
(1)正数:比0大的数叫做正数;
负数:比0小的数叫做负数;
0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类
3、有关数轴
(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;
相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
4、任何数的绝对值是非负数。
最小的正整数是1,最大的负整数是-1。
5、利用绝对值比较大小
两个正数比较:绝对值大的那个数大;
两个负数比较:先算出它们的绝对值,绝对值大的反而小。
6、有理数加法
(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.
(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.
(3)一个数同零相加,仍得这个数.
加法的交换律:a+b=b+a
加法的结合律:(a+b)+c=a+(b+c)
7、有理数减法:减去一个数,等于加上这个数的相反数。
8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12-25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”
9、有理数的乘法
两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。
第一步:确定积的符号第二步:绝对值相乘
10、乘积的符号的确定
几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;
当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。
11、倒数:乘积为1的两个数互为倒数,0没有倒数。
正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)
倒数是本身的只有1和-1。
2024初中数学工作总结 篇9
参加初中数学远程培训二个多月时间了,通过这段培训,我受益匪浅,感受很多。下面就是我的.点滴体会:
一.对新教材有了初步了解
学习了义务教育新课标的理念和课例解读后,我对于未曾变动的旧的知识点,考纲上有所变化的做到了心中有数。对于新增内容,哪些是中考必考内容,哪些是选讲内容,对于不同的内容应该分别讲解到什么程度,也更明确了。这样才能做到面对新教材中的新内容不急不躁、从容不迫,不至于面对新问题产生陌生感和紧张感。通过学习,使我清楚地认识到初中数学新课程的内容是由哪些模块组成的,各模块又是由哪些知识点组成的,以及各知识点之间又有怎样的联系与区别。专家们所提供的专业分析对我们理解教材,把握教材有着非常重要而又深远的意义。对于必修课程必须讲深讲透,对于部分选学内容,应视学校和学生的具体情况而定。
二.对课堂教学设计、教学案例的编写方面的内容有了提高。
培训活动中,自己通过视频观看学习了“案例导入”、“专家讲座”、“互动讨论”、“课例作业”等内容,使自己在教学设计、教学案例以及课堂教学等方面有了进一步的提升和加强,特别是在课堂教学设计,令人豁然开朗。通过视频观看学习了《有序数对》和《图形的旋转》,感觉很有收获。如以往听课从未记录过讲课者教学过程各个环节的时间分配,听课时只注意了讲课者的知识传授情况,而没注意欣赏、品析讲课者的教学追求、洞察其教学的理论依据等。特别是听了专家讲座后,自己才知道还有很多不足。自己今后将认真按专家的指点开展教学活动。
三、教学实战能力得到加强
本次培训充分关注培训教师的实际需要,不仅传授了现代教学技术和手段,在大的纬度上帮助教师构建理论体系,同时更关注新课程背景下课堂教学深层问题。专家向我们讲授了“计算机教学手段应用”“中学教师标准解读”“教学技术及应用”“新课标解读”等,先进的教学理念及其别具一格的教学风格使本人在观摩、思考、碰撞中得到提高。整个培训活动从实际到理论,再由理论到实际,循序渐进,降低了学习的难度,提高了学习的实效。
四、通过培训学习,使我清楚地认识到整体把握初中数学新课程的重要性及其常用方法。
整体把握初中数学新课程不仅可以使我们清楚地认识到初中数学的主要脉络,而且可以使我们站在更高层次上面对初中数学新课程。整体把握初中数学新课程不仅可以提高教师自身的素质,也有助于培养学生的数学素养。只有让学生具备良好的数学素养才能使他们更好地适应社会的发展与进步。与学生的总结、交流能促进我们产生更多更好的授课方式、方法,产生更多更新的科学思维模式。这对于我们提高课堂教学质量具有非常现实而深远的意义。
总之,此次培训活动,使自己的教育教学观念、教学行为方法、专业化水平,教育教学理论均有了很大的提升。今后,自己充分将所学、所悟、所感的内容应用到教学实践中去,做新时期的合格的初中数学教师。
2024初中数学工作总结 篇10
1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等
26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合
30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48定理四边形的内角和等于360°49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等
65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1关于中心对称的两个图形是全等的
72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2S=L×h
83(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)
95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方
99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的.两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角
129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)
136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
(n2)180139正n边形的每个内角都等于
n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
pnrn141正n边形的面积Sn=p表示正n边形的周长
2142正三角形面积
32aa表示边长4143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,
k(n2)180360化为(n-2)(k-2)=4因此
n144弧长计算公式:L=
nR180nR2LR145扇形面积公式:S扇形==
3602146内公切线长=d-(R-r)外公切线长=d-(R+r)
公式分类及公式表达式
乘法与因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
bb24ac2a
根与系数的关系:X1+X2=-b/aX1*X2=c/a注:韦达定理判别式
b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac
2024初中数学工作总结 篇11
知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、3.4、9/10、π(圆周率)。
非负数
非负数大于或等于0。
非负数中含有有理数和无理数。
非负数的和或积仍是非负数。
非负数的和为零,则每个非负数必等于零。
非负数的积为零,则至少有一个非负数为零。
非负数的绝对值等于本身。
常见的非负数
实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。
常见表现形式
非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。
知识归纳:任何一个非负数乘以-1都会得到一个非正数。
2024初中数学工作总结 篇12
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
2024初中数学工作总结 篇13
顾名思义。中位线就是图形的中点的连线,包括三角形中位线和梯形中位线两种。
中位线
中位线概念
(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。
注意:
(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。
(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。
(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。
2024初中数学工作总结 篇14
一、学情分析的意义
学情分析就是要对学生的实际情况进行分析,包括经验、知识、能力、情感等。建构主义的皮亚杰认为,知识既不是客观的,也不是主观的,而是个体在与环境相互作用的过程中逐渐建构的;相应地,认识既不起源于主体,也不起源于客体,而是起源于主客体之间的相互作用。进一步说,个体在遇到新刺激时,先尝试用自己原有的认知结构去同化它,以求达到暂时的平衡;同化不成功时,个体则采取顺应的方法,即通过调节原有认知结构或新建认知结构,来得到新的平衡。个体的学习不是在一片空白或完全相同的背景下进行的,他的已有经验、知识、能力、情感等都不同程度地参与其中。因此,教师的教学应尊重学生的心理发展规律。帮助学生把教材中学习的新内容与头脑中原有的认知结构建立起本质的清晰的联系,才是有意义学习。
当学生头脑中不具备学习新知识的知识储备时,教师可以补充相关知识,为学生提供新知识的固着点;如果学生已经具备了学习新知识的知识储备,但是不具备独自探究的能力时,教师可以采取讲授的教学方法;如果教学内容学生已经完全掌握,就需要教师进行教学内容的筛选和教学目标的提升,以实现教育效果的最优化。由此可见,学情分析对于教学目标确定,教学方法选择和教材处理都具有重要意义。
二、学情分析的内容
《义务教育数学课程标准》在课程目标中从知识与技能、数学思考、问题解决和情感态度四个维度对学生的发展提出了预期目标。课程目标是预先确定的要求学生通过某门课程的学习所应达到的学习结果。教学目标是通过一个特定教学过程(如一节课)的学习,学生应该达到的学习结果。教学目标是对课程目标的细化。而在确立教学目标时,必须从学生的实际情况出发分析学生已经具备的学习状态,与预期目标的差距。因此,我从课程目标这四个维度来划分学情分析的内容,更有利于学生已经具备的学习状态和教学目标要求状态的有效衔接,也更有利于课程目标的实现。
1.知识与技能
基础知识和基本技能是学生数学学习的基础,是数学应用的基础。在教学中,学生是否具备了学习新知识所需要的相关概念以及对有关定义的运用情况影响着后续学习。美国当代著名心理学家戴维奥苏伯尔(DavidAusubel)曾在《教育心理学―认知观点》中说:“假如我把全部教育心理学仅仅归纳为一条原理的话,我将一言以蔽之:影响学习的唯一重要的因素,就是学习者已经知道了什么。要探明这一点,并应据此进行教学。”因此,在教学前应了解学生原有知识基础,作为新知识的生长点。
2.数学思考
数学思考是指运用“数学方式的理性思维”进行的思考,它培养学生以数学的眼光看世界。学生除了要学习一些现成的概念和法则外,更重要的是这些结论的生成过程,而这个过程离不开数学思考。如从现实的生活中抽象出数学问题,通过推理丰富数学结论,通过建模把这些结论应用到现实生活中去。这些抽象、推理、建模思想在每一节课,每一个知识点的生成过程中都需要考查,才能最大限度的调动学生思考。
3.问题解决
问题解决包括从数学角度发现、提出、分析和解决问题的能力四个方面。它是经由数学思考发现问题,用数学语言和符号提出问题,借助以往的知识和经验分析解决问题,多次训练后形成一种稳定的能力。问题解决的学情分析应侧重于学生的已有解决相关问题的经验,积累了足够经验才能把握问题的本质,从而解决问题。
2024初中数学工作总结 篇15
一、师德方面:加强修养,塑造师德
我始终认为作为一名教师应把“师德”放在一个重要的位置上,因为这是教师的立身之本。“学高为师,身正为范”,这个道理古今皆然。从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。我始终坚持给学生一个好的师范,希望从我这走出去的都是合格的学生,都是一个个大写的“人”。为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,课余时间我阅读了大量的书籍,不断提高自己水平。今后我将继续加强师德方面的修养,力争在这一方面有更大的提高。
二、教学方面:虚心求教,强化自我
担任两个班的数学教学的工作任务是艰巨的,在实际工作中,那就得实干加巧干。对于一名数学教师来说,加强自身业务水平,提高教学质量无疑是至关重要的。随着岁月的流逝,伴着我教学天数的增加,我越来越感到我知识的匮乏,经验的缺少。面对讲台下那一双双渴望的眼睛,每次上课我都感到自己责任之重大。为了尽快充实自己,使自己教学水平有一个质的飞跃,我从以下几个方面对自身进行了强化。
首先是从教学理论和教学知识上。我不但自己订阅了三四种教学杂志进行教学参考,而且还借阅大量有关教学理论和教学方法的书籍,对于里面各种教学理论和教学方法尽量做到博采众家之长为己所用。在让先进的理论指导自己的教学实践的同时,我也在一次次的教学实践中来验证和发展这种理论。
其次是从教学经验上。由于自己教学经验有限,有时还会在教学过程中碰到这样或那样的问题而不知如何处理。因而我虚心向老教师学习,力争从他们那里尽快增加一些宝贵的教学经验。我个人应付和处理课堂各式各样问题的能力大大增强。
最后我做到“不耻下问”教学互长。从另一个角度来说,学生也是老师的“教师”。由于学生接受新知识快,接受信息多,因此我从和他们的交流中亦能丰富我的教学知识。
三、考勤纪律方面
我严格遵守学校的各项规章制度,不迟到、不早退、有事主动请假。在工作中,尊敬领导、团结同事,能正确处理好与领导同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,毫不松懈地培养自己的综合素质和能力。
四、业务进修方面
随着新课程改革对教师业务能力要求的提高,本人在教学之余,还挤时间自学本科和积极学习各类现代教育技术。
五、不足之处
反思一年多的工作,自己在一些细节工作上还存在着不足,特别是学生对作业本的保管、潜能生作业的书写缺乏指导和严格要求。在今后的`工作中,应充分注重工作中的细节,尽量使自己的工作做得扎实。
总之,在这学期的教学工作中收获了很多,提高了很多,同时也感受到了自己的不足。在今后的工作中,应不断提高自己的业务能力、充实自己的业务理论水平、提高自己在学生管理方面的能力、注重细节工作,一如既往的兢兢业业,勤奋钻研,尽量使自己的各项工作做得更扎实、更完善、更有效、更实在。
2024初中数学工作总结 篇16
通过研修学习,我接触到了专家学者们的教育新理念,同时还与班内的一线教师们进行了充分的交流,可以说这次网上研修内容很深刻,研修的效果影响深远。下面我谈谈一些体会。
首先,教师要尊重、关心、信任学生。因为良好的师生关系是学好数学的前提。尊重、关心、信任学生,和学生友好相处是营造和谐课堂氛围的基础,在教学活动中,教师与学生在心理上形成一种稳定,持续的关系,不仅是在知识、能力上的交往,也是情感心灵上的沟通、交流。 其次,教师要立足课堂,将所学的新课程理念应用到课堂教学实践中,力求让我的数学教学更具特色,形成独具风格的教学模式,更好地体现素质教育的'要求,提高数学教学质量。
第三、培养学生的学习兴趣,树立其自信心,在学生取得点滴成绩时予以表扬,让他们觉得自己能行。有了自信心,他们对难题就有了挑战性,这样他们才会积极主动进行学习。同时培养学生的自学能力,帮助学生发展自学技能。课堂上我有意识对学生的进行合作训练。在小组合作过程中,教师要承担小组任务,同时有目的地在小组活动中示范,协调教学活动,确保小组专注于学习目标,使小组成员在教师带领下逐步学会合作的技能。
第四运用网络资源,丰富自己的教学内容。在教学设计过程中,
对教学内容、教学媒体、教学策略和教学评价等要素进行具体计划,使自己的课堂多姿多彩。
第五课堂上重视德育工作,让学生在学习数学知识的同时,陶冶他们爱自然、爱科学、爱祖国、爱劳动的思想情操,树立关心生态环境等的思想,促进学生全面发展和个性培养。
总之,今后,自己一定更新观念,不断尝试新的教学方法,努力提高自己的业务水平和教学能力。精心设计每堂课,做一名学生最喜欢的老师。
2024初中数学工作总结 篇17
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
2024初中数学工作总结 篇18
一.圆的定义
1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。
2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
二.圆心
1.定义1中的定点为圆心。
2.定义2中绕的那一端的端点为圆心。
3.圆任意两条对称轴的交点为圆心。
4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示
5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的`二分之一.d=2r或r=二分之d。
8.圆的半径或直径决定圆的大小,圆心决定圆的位置。
三.圆的基本性质
1.圆的对称性
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2.垂径定理
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5.夹在平行线间的两条弧相等。
(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。)
6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
四.圆和圆
1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。
2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。
3.两个圆有两个交点,叫做两个圆的相交。
4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。
5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。
五.正多边形和圆
1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。
2.正多边形与圆的关系:
(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。
(2)这个圆是这个正多边形的外接圆。
2024初中数学工作总结 篇19
初中数学多项式的加法中考知识点
多项式和单项式一起被称为整式,整式的运算离不开加法,多项式也是如此。
多项式的加法
有限个单项式之和称为多元多项式,简称多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。
多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。
F上x1,x2,…,xn的多项式全体所成的集合F[x1,x2,…,xn],对于多项式的加法和乘法成为一个环,是具有单位元素的整环。 域上的多元多项式也有因式分解惟一性定理。
关于多项式的加法计算的中考知识要领已经为大家整合出来了,请同学们相应做好笔记了。
2024初中数学工作总结 篇20
通过几个月的网上研修学习,我接触到了专家学者们的教育新理念,学习了不少优秀教师的课堂教学设计,同时还与班内的一线教师们进行了充分的交流,收获颇多。可以说这次网上研修内容很深刻,研修的效果将影响深远。作为一个农村中学教师的我深深感到学习的重要性,在今后的教学中,我将立足于自己的本职工作,加强理论学习,转变教育教学观念,积极实践新课改,铺设好自己的专业化发展之路。我个人感觉在这次学习中收获很多,盘点收获主要有以下几个方面:
首先,教师要尊重、关心、信任学生。
因为良好的师生关系是学好数学的前提。尊重、关心、信任学生,和学生友好相处是营造和谐课堂氛围的基础,在教学活动中,教师与学生在心理上形成一种稳定,持续的关系,不仅是在知识、能力上的交往,也是情感心灵上的沟通、交流,首要的是教师要对学生关心、信任、尊重。
其次,教师要立足课堂,在实践中提升自身价值。
课堂是教师体现自身价值的主阵地,在今后的教学中,我将努力将所学的新课程理念应用到课堂教学实践中,立足“用活新老教材,实践新理念。”力求让我的数学教学更具特色,形成独具风格的教学模式,更好地体现素质教育的要求,提高数学教学质量。
第三、在教学中不失时机地培养学生的自学能力。
引导学生克服心理障碍,树立自信心,在学生取得点滴成绩时予以表扬,让他们觉得自己能行。有了自信心,他们对难题就有了挑战性,这样他们才会积极主动进行学习。为了培养学生的自学能力,需要帮助学生发展自学技能。课堂上我有意识对学生的进行合作训练。在小组合作过程中,教师要扮演小组角色,承担小组任务,同时有目的地在小组活动中示范合作技巧和协调教学活动,确保小组专注于学习目标,使小组成员在教师言传身教带领下逐步学会合作的技能。
另外,我感触最深的一点是作为传道授业的老师,只有不断的更新自己的知识,不断提高自身素质,不断的完善自己,才能教好学生。如果自身散漫,怎能要求学生认真?要提高我们的自身素质,就要求我们自身不断网上研修,不断开辟新教法。摒弃旧的教学方法,把先进的教学模式引入课堂,自觉地走进新课程。
作为一个具有30多年教年的老教师,我见惯了“老师教,学生学;老师讲,学生听”这种固定的教学模式,这种教学模式限制了学生的发展,压抑了学生学习的热情,不能焕发学生的潜能。通过网上研修学习,“合作学习”、“主动探究”、“师生互动”、“生生互动”等新型的教学模式为课堂注入了生机与活力。通过网上研修我认识到:这些新的教学模式给学生更加自由的学习空间,体现了以学生为本的理念,老师要自觉地把新的教学模式引入课堂,改变课堂的面貌,使课堂气氛活跃;教学民主,学生的学习热情才会高涨;师生关系才能融洽。才能充分体现素质教育的根本目标。这也是新课改向我们提出的课题。
通过这次网上研修,我懂得了网络的.重要性;让我懂得了如何运用网络资源。在教学设计过程中,我依据教育教学原理、科学的方法,研究、探索教和学系统中各要素之间的本质联系,然后对教学内容、教学媒体、教学策略和教学评价等要素进行具体计划。另外,我在教学中,鼓励学生收集身边有关的数学问题,在课堂上开辟一片互相交流、互相讨论关注问题的天地。让学生学得更轻松也让学生能够更多的参与到课堂之中得到更多的操作技巧。同时,课堂上我重视德育的渗透工作,让学生在学习数学知识的同时,陶冶他们爱自然、爱科学、爱祖国、爱劳动的思想情操,树立关心生态环境等的思想,促进学生全面发展和个性培养。通过努力,我根据数学学科的特点,迎合学生好奇心强的特性,大胆地进行课堂改革。把课堂与生活拉近,以形式多样的探究活动为主,让数学课的范围扩大到生活的方方面面。通过这样的资料互动形式把课堂教学与社会生活联系起来,体现数学来源于社会又应用于社会的一面。以此实现素质教育的根本目标。
2024初中数学工作总结 篇21
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补。
2024初中数学工作总结 篇22
数轴
⒈数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不
可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的(小)数
⑴最小的自然数是0,无的自然数;
⑵最小的正整数是1,无的正整数;
⑶的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0;
⑵a0时,-a0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
2024初中数学工作总结 篇23
三角形的知识点
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的分类
3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7、高线、中线、角平分线的意义和做法
8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9、三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余
推论2三角形的一个外角等于和它不相邻的两个内角和
推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半
10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11、三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
四边形(含多边形)知识点、概念总结
一、平行四边形的定义、性质及判定
1、两组对边平行的四边形是平行四边形。
2、性质:
(1)平行四边形的对边相等且平行
(2)平行四边形的对角相等,邻角互补
(3)平行四边形的对角线互相平分
3、判定:
(1)两组对边分别平行的四边形是平行四边形
(2)两组对边分别相等的四边形是平行四边形
(3)一组对边平行且相等的四边形是平行四边形
(4)两组对角分别相等的四边形是平行四边形
(5)对角线互相平分的四边形是平行四边形
4、对称性:平行四边形是中心对称图形
二、矩形的定义、性质及判定
1、定义:有一个角是直角的平行四边形叫做矩形
2、性质:矩形的四个角都是直角,矩形的对角线相等
3、判定:
(1)有一个角是直角的平行四边形叫做矩形
(2)有三个角是直角的四边形是矩形
(3)两条对角线相等的平行四边形是矩形
4、对称性:矩形是轴对称图形也是中心对称图形。
三、菱形的定义、性质及判定
1、定义:有一组邻边相等的平行四边形叫做菱形
(1)菱形的四条边都相等
(2)菱形的.对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形
(4)菱形的面积等于两条对角线长的积的一半
2、s菱=争6(n、6分别为对角线长)
3、判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形
(3)对角线互相垂直的平行四边形是菱形
4、对称性:菱形是轴对称图形也是中心对称图形
四、正方形定义、性质及判定
1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形
2、性质:
(1)正方形四个角都是直角,四条边都相等
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形
(4)正方形的对角线与边的夹角是45°
(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形
3、判定:
(1)先判定一个四边形是矩形,再判定出有一组邻边相等
(2)先判定一个四边形是菱形,再判定出有一个角是直角
4、对称性:正方形是轴对称图形也是中心对称图形
五、梯形的定义、等腰梯形的性质及判定
1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等
3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形
4、对称性:等腰梯形是轴对称图形
六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。
七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。
八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。
九、多边形
1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2、多边形的内角:多边形相邻两边组成的角叫做它的内角。
3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
8、公式与性质
多边形内角和公式:n边形的内角和等于(n-2)·180°
9、多边形外角和定理:
(1)n边形外角和等于n·180°-(n-2)·180°=360°
(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
10、多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形
(2)n边形共有n(n-3)/2条对角线
圆知识点、概念总结
1、不在同一直线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3、圆是以圆心为对称中心的中心对称图形
4、圆是定点的距离等于定长的点的集合
5、圆的内部可以看作是圆心的距离小于半径的点的集合
6、圆的外部可以看作是圆心的距离大于半径的点的集合
7、同圆或等圆的半径相等
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12、①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
14、切线的性质定理:圆的切线垂直于经过切点的半径
15、推论1经过圆心且垂直于切线的直线必经过切点
16、推论2经过切点且垂直于切线的直线必经过圆心
17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18、圆的外切四边形的两组对边的和相等,外角等于内对角
19、如果两个圆相切,那么切点一定在连心线上
20、①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交R-rr)
④两圆内切d=R-r(R>r)⑤两圆内含dr)
21、定理:相交两圆的连心线垂直平分两圆的公共弦
22、定理:把圆分成n(n≥3):
(1)依次连结各分点所得的多边形是这个圆的内接正n边形
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24、正n边形的每个内角都等于(n-2)×180°/n
25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26、正n边形的面积Sn=pnrn/2p表示正n边形的周长
27、正三角形面积√3a/4a表示边长
28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29、弧长计算公式:L=n兀R/180
30、扇形面积公式:S扇形=n兀R^2/360=LR/2
31、内公切线长=d-(R-r)外公切线长=d-(R+r)
32、定理:一条弧所对的圆周角等于它所对的圆心角的一半
33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
2024初中数学工作总结 篇24
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,
7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。
2024初中数学工作总结 篇25
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。近几年来,通过数学新课程改革的实行,给基础教育注入了生机和活力。但由于多方面的原因推行过程中暴露的问题也不少,笔者近几年来对我国数学教改的理论与实践作了多角度、全方位的思考和分析,发现在取得教改成果的同时,其中也出现了很多有必要提请教育界人士引起重视的问题,这些问题不从根本上加以解决,数学课改便难以走上正轨的出路。下面笔者对数学新课程改革中存在的问题及对策作一点简单的阐述。
一、数学教改的存在的问题
1、数学新课改精神落实不到位
目前通过数学新课标的学习,不少教师也重视新课改的指导定神,尽管也提到了思想教育和能力的提高,但大家的着眼点只在知识。能够落实的也只是知识目标。部分教师也许是因为“惯性”,也许是因为新的课程理念还未形成,在课堂教学中依然是从概念到概念,就知识讲知识,不能把知识与应用、知识与能力结合起来,只注重基础知识的教学,只注重落实知识性的目标,忽视《课程标准》规定的三维目标的落实。例如,在讲初一年级有理数运算时,由于只注重得出正确的结果,强调运算法则、运算顺序,而对生活中列举事例不够,更是对整体的运算律或简化运算注重不够,而把数学引入生活中更能对发展学生运算能力却更为重要。教材中是作为重点来处理,但(课程标准》上并没有规定这个知识点,故全书不出现结论。教材上这样安排着眼点在于学生的参与及过程的体验,是要让学生经历探究的过程,能够得出大致的正确结论即可。至于结论是否完整、表达是否严谨,并不是本节内容所强调的。而实际教学中,部分教师恰恰是只注意到概念与法则的教学上,只注重了知识的目标,而忽视了其实践教学。
2、忽视对学生自学能力和创造能力的培养
目前数学教改活动中的一个突出问题便是重视知识和解题技能的传授,而忽视了对学生自学能力的培养,这是一个极为令人担忧的现象,因为学生在校学习的知识毕竟是有限的,更多的知识则是学生在走向社会后通过自学来获得。所以教学活动中要重视教给学生获取知识的方法,叶圣陶先生的“教是为了不教”不仅仅只适用于语文教学。
由于受到升学率的冲击,在高、中考指挥棒的指挥下,迫于各种社会压力,目前教改实践中很多采用的是灌知识,讲题型,递游于题海,教改老师有口难言,学生疲惫不堪。对学生创造能力的'培养是一个长期被忽视了的问题。
3、教改过程中方向不明,缺乏创新或急于标新立异
很多教师对教改的认识不足,因此在教改问题上方向不明,对于教学、教研、教改问题上不能正确处理这三者的关系。此外,有些教师缺乏创新精神,不作深入思考,便将别人的教改经验盲目地加以移植,结果只能导致失败。
在教改问题上,有些教师由于理论知识不丰富,缺乏严谨的治学精神,急于标新立异,故弄炫虚,开口便是自己的“什么法”或“什么式”等。
4、部分学校教改过程不能坚持到底,易受外界左右
在教改过程中,有些教师在教改上付出了艰苦的劳动,并且取得了优异的成绩,正当他们准备大显身手的时候,却被上级委任了校长、主任之类的行政职务。这样经常外出开会、学习,忙于行政事务,在业务工作上用非所学,结果两败俱伤。
或者一旦取得一点成绩,便到这里作报告,那里介绍经验,最终使教改成为昙花一现。
以上便是在教改过程中容易出现的问题,要使教改达到预期的目的,有必要通过对以上问题作出分析以采取措施,使数学教改得以顺利进行,从而达到预期的目的。
二、面对数学教改出现的问题应采取的措施
要使教改能顺利地按计划地进行,达到预期的目的,必须寻求教改中出现的问题而采取解决的措施。依笔者之见:可以从如下几方面着手:
1、教师必须加强理论及业务的学习。
对教师而言,加强理论及业务学习的重要性是不言而喻的,理论的模糊必然导致实践的盲目,教学中的无效劳动主要是由于理论上的偏颇所致。
首先,教师要加强哲学的学习,教改过程中要以辩证的观点提出问题、分析问题和解决问题。
其次,教师要加强教育心理学的学习,要使教改取得成功,必须在教育科学理论的指导下才能得以进行,否则便不能使教改达到预期的目的。
在业务学习方面,教师要不断地加强本学科的学习,同时还应了解数学学科的最新发展与动向,这样才能与教材同步,与学生同步,与时代同步。
2、教师应加强对教学法的研讨
要使教改取得成功,教师必须熟悉各种数学教学法及其特点,并在教学中选择恰当的教学方法。目前各地教改在教法改革方面取得了很大的成绩,总结出了很多各具特色的教学方法。
3、教师必须端正思想,提高认识
教改是教育事业的百年大计,它需要教师付出的不仅仅是一年或几年的劳动,而应当是十几年、几十年甚至是终身的求索和奋斗,教师要有战胜困难的信心和勇气,知难而进。同时教师教改的方向要明确,目标宜具体:要通过教改实验使学生在较少的时间内最大限度地获取知识,促使学生的各项能力得以全面发展。
4、同科教师通力协作,联合攻关
个人的时间、精力和知识毕竟是有限的,要使教改活动能顺利地实施进行,同科教师要通力协作,充分发挥集体的智慧和力量,使全体教师能参加教改,联合攻关,有利于教改向纵向深入发展,这就必须杜绝和防止文人相轻,同行相嫉妒的不良现象,老教师不要以有较强的实践经验而自居,青年教师也不要因为有较高的理论知识而自傲。
5、教师讲解中要注重对学生推理能力的培养
新教材在九年级下册才正式引入证明,三段论式的演绎推理正式开始。因此,在初中阶段培养学生逻辑推理训练的时间太短,学生演绎推理能力达不到要求,这将给高中教学带来不利因素。三年实验结果也可证实这一现实。如我市某年数学毕业卷的压轴题是;△abc是⊙0的内接等边三角形,d为⊙0上的一点,ad与bc相交于e,连结bd,ae=4cm,ed=lcm。求:(1)∠d的度数;(2)ab的长。”该题应是一道较简单的题目,但评卷后的抽样统计结果是:该题得分率为28.6%。确实反映出学生的演绎推理能力薄弱。因此,在学生推理能力的培养上,我们提出以下建议:一是在八年级《四边形》一章开始,加强学生说理能力的培养;二是在搞好实验、合情说理的前提下,渗透演绎推理,三是将《证明》一章的教学提前;四是加强几何分析法的教学,提高学生演绎推理能力。
新的教学理念是:注重学生的发展,面向全体学生,培养学生对学科探究的兴趣
和热爱,教学中贴近生活、社会,密切联系实际,体现学习方式和师生关系的转变,突出学生主动参与,发展学生的探究乐趣。只要我们广大教师,对影响教改实验中的的问题引起重视、作了分析,我们离新课改的要求就会越来越近
2024初中数学工作总结 篇26
动点与函数图象问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.
图形运动与函数图象问题常见的三种类型:
1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
动点问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.
3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
总结反思:
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.
解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的.
解答函数的图象问题一般遵循的步骤:
1、根据自变量的取值范围对函数进行分段.
2、求出每段的解析式.
3、由每段的解析式确定每段图象的形状.
对于用图象描述分段函数的实际问题,要抓住以下几点:
1、自变量变化而函数值不变化的图象用水平线段表示.
2、自变量变化函数值也变化的增减变化情况.
3、函数图象的最低点和最高点.
2024初中数学工作总结 篇27
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
l、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
六、圆的判定性质
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 dr
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 dR+r ②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)
2024初中数学工作总结 篇28
角度制知识:用度(°)、分(′)、秒(″)来测量角的大小的制度叫做角度制。
角度制
角度制:规定周角的360分之一为1度的角,用度作为单位来度量角的单位制叫做角度制。
角度制中单位的换算。
角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。
角度制就是运用60进制的例子。
角度制中角度的运算。
两个角相加时,°与°相加,′与′相加,″与″相加,其中如果满60则进1。
两个角相减时,°与°相减,′与′相减,″与″相减,其中如果不够则从上一个单位退1当作60。
测量角的大小的另外一个方法,角度制与弧度制的换算。
主要把握180°=π rad这个关系式。
例如:1度=π /180 弧度30度转换成弧度值:弧度=30*π /180终边相同的角的表示β=α+k360°k属于整数。
知识归纳:除了角度制可以测量角的大小,还有一种——弧度制也可以测量角的大小。
2024初中数学工作总结 篇29
一、数与代数A:数与式:
1:有理数
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法: 减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2:实数
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数/0的立方根是0/负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3:代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4:整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的.和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM。AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一样。
A0=1,A-P=1/AP
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式
方法:提公因式法/运用公式法/分组分解法/十字相乘法
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
B:方程与不等式
1:方程与方程组
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
2:不等式与不等式组
不等式:
①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
3:函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:
①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
②当B=0时,称Y是X的正比例函数。
一次函数的图象:
①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数Y=KX的图象是经过原点的一条直线。
③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。
④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
二、空间与图形
A:图形的认识:
1:点,线,面
点,线,面:
①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:
①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
3视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧,扇形:
①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2:角
线:
①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。
③将线段的两端无限延长就形成了直线。直线没有端点。
④经过两点有且只有一条直线。
比较长短:
①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时
2024初中数学工作总结 篇30
①直线和圆无公共点,称相离。AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
2024初中数学工作总结 篇31
1.分式及其基本性质:分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的值不变。
2.分式的运算:
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
2024初中数学工作总结 篇32
平方根表示法:
一个非负数a的平方根记作,读作正负根号a。a叫被开方数。
中被开方数的取值范围:
被开方数a≥0
平方根性质:
①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
平方根与算术平方根区别:
1、定义不同。
2表示方法不同。
3、个数不同。
4、取值范围不同。
联系:
1、二者之间存在着从属关系。
2、存在条件相同。
3、0的算术平方根与平方根都是0
含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
求正数a的算术平方根的方法;
完全平方数类型:
①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
2024初中数学工作总结 篇33
教学之路仍在脚下延伸,作为教学之路上的蹉跎前行者,不求夏花之灿烂,但求秋叶之静美。在以后的工作中,我将保持自己的勤奋和执着,把自己的工作做的更好。 在中学任职以来,我本着以重实际、勤钻研、求实效的工作原则,以培养学生创新精神和实践能力为重点,以新课程改革为契机,优化教学常规,深化课堂教学改革,大力推行素质教育,求真、务实、创新、高效地工作着,现将教学工作总结如下:
一、一片冰心在玉壶——树立新的教育理念,坚定教书育人信念。
教育事业乃民族大业,振兴教育人人有责,素质教育和新课程改革对中学教育提出新的要求,学生成为教育的中心,爱成为教师职业道德的核心,也成为教书育人的根本途径,因此,我确立了“一切为了人的发展”的教育理念,明确了“用真挚的爱教育每一个学生”,用适合每个学生的方法教育学生的教学工作目标。
二、衣带渐宽终不悔——我的教学工作。
任职期间,我在坚持抓好新课程理念应用的同时,大胆改革课堂教学,探索新的教学方法,具体表现在:
1、进一步优化教学常规,充分发挥老师的主导作用。围绕着“什么是有效的历史教学?怎样才能提高课堂教学的有效性?”这一问题,我作了认真思考和分析,明确了教学思路和重点,一是在备课上下功夫,为此,我继续钻研和解读新课程标准、考纲和新教材,继续分析、了解学情,关注学生的知识基础、思想动态,备课做到知识点准确全面,知识体系简明科学,授课方式艺术多变,感染力强,使课堂教学集知识性、艺术性、思想性于一体,从而激发了学生的学习兴趣,有效调动了学生的学习积极性,大大提高了课堂效率。二是在巩固训练上设底线。即精心设计课后作业和单元检测,定时定量训练,全批全改,然后通过讲评使学生不仅查缺补漏,明确了知识,而且掌握了高质量完成试卷的技巧和方法,提高了解决问题的能力。
2、调动学生积极性,突出学生的主体地位。如何突出学生的主体地位?我从调动学生的学习积极性入手,因为积极性提高了,学生才会真正投入到学习中来,做到自主学习与合作探究,才会主动发现问题和解决问题。为此,在备课时,考虑学生的知识储备和兴趣点,设计出激发学生兴趣和激活学生思维的问题;课堂上与学生建立平等、民主的学伴关系,给自己的教学风格定位为亲切、风趣、激情、广博,这就是采取多鼓励、少批评的评
2024初中数学工作总结 篇34
一直以来,在试卷讲评课的上法上总存在着一些困惑。例如,试卷上的错题因人而异,如何上能照顾到全体,将每位学生出错的问题解决?通过这次培训我认识到,我们没有足够的时间面面俱到的讲解,在一定的时间内想面面俱到,那么每个题目也只是蜻蜓点水,一节课下来真正沉淀到头脑中的知识寥寥无几。今后的试卷讲评课我打算按照下面的思路来上,请刘老师多批评指正。
一、考试之后教师要做好测试分析,并充分备课。
通过测试分析,首先,弄清学生集中出错的题目,找出学生的共性问题,并针对这些共性的问题展开备课。备课要备学生出错的原因,试卷讲评时如何对这些问题讲解与完善。其次,弄清每位学生的得分,对于成绩波动大的同学通过谈话等方式及时了解情况并帮助解决困难。
二、下发试卷,学生自己纠错。
给学生自己纠错的机会,将能自己改正或通过小组合作改正的题目在试卷讲评前改过来。
三、订正答案,进一步改错。
给学生标准答案,在答案的引导下,学生进一步寻找解题思路,完善解题步骤,查找丢分原因,加深对知识的理解。
四、重点题、错题重点讲解。
经过两轮的改错之后学生存留下的问题已经很少,教师试卷讲评时就要解决这些遗留问题、重点题、错题。对于这些问题可以通过分类讲解、同类知识串讲、变式训练、一题多解、多个知识点上串下联等方式讲透。经过寻根问底,可使学生对不明确的知识点加深理解,再认识,然后巩固练习。这个过程下来同时可复习到多个知识点,建立知识体系,拓展学生思维。
五、方法总结。
围绕一个知识点讲解之后,要让学生总结解题思想、方法,掌握答题技巧。需要时可让学生简记。
六、解答疑问。
通过学生提出疑问,大家共同解答,完善学生对知识的认识。
近几年教基础年级,所以感觉上章节复习课较多,专题复习课很少。我们学校的章节复习课与刘老师的“出示问题,引出知识”是一致的。通过问题的解决实现知识点的复习。
通过听两位韩老师的课我感觉有几处大的收获:
一、要想实现高效课堂,教师首先高效备课。从两位老师对题目的选取上能看到她们备课的用心。值得学习。
二、充分放手给学生,让学生思考、解决问题、总结方法。教师适时点拨。
三、重要知识点、思想、方法及时简记。“好脑子不如烂笔头”,的确如此。根据艾宾浩斯的遗忘规律,一节课下来学到的知识点总在慢慢遗忘,如果课堂上不把关键点记录下来的话,回过头来复习时头脑中的知识漏洞难以得到修缮。
通过这次学习我感觉收获很大,希望刘老师多组织类似活动帮助年轻教师成长。同时对于这次培训的肤浅认识希望刘老师多批评指正。谢谢!
2024初中数学工作总结 篇35
一、全新的研修,全新的体验。
20xx年xx月xx日,全省一百多名数学教师齐聚济南,开展为期10天的集中加分散的研修学习。
晚上的破冰活动,使每一个人都能感觉到,这100名教师都是全省初中数学界最优秀的代表。这其中有多位齐鲁名师、山东优秀教师、山东创新人物、全国优秀教师、全国课改实验先进教师,更不乏山东教学能手、山东省特级教师、省优质课一等奖获得者等等,很多教师不仅在数学上赫赫有名,也有很多班级管理方面的省级专家。后面的研修,也进一步证明了这是一个扎实务实的教师团队。
各级培训,越来越科学、务实,越来越需要耗费精力,这大家都是早有心理准备的。但本次培训中精力付出之大,还是远远超过了每一个人的预期。对于我来说,很渴望听到专家醍醐灌顶是的指点,也很希望学习别人先进的经验。但开始培训后,却没有和我想象的一样——听报告和观摩优秀课例,而是从一开始就在做任务培训。整个培训都是围绕着一个课例打磨展开和结束的。“三次备课、两轮打磨、4段视频制作、多个文本撰写”,从问题选择到问题澄清,从课例选择到基于研究主题的一次次策划,从教学设计的不断完善到课堂观察量表的细细斟酌,从课堂前台的关注到背后理论的不断深入,从任务分担到共同完成制作。一个不一样的研修,使我们感受到了很多从未有过的体验,给了我们许多不一样的思考和震撼。
二、艰巨的任务,共同的成果。
这次研修,是一次基于提高校本研修实效性的体验式的范例学习,这次研修,是一次基于任务完成的研修。
29日上午,高研班举行了简短而又隆重的开班典礼。齐鲁师范学院副院长陈小言、山东省中小学师训干训中心主任毕诗文、副主任刘文华、省中小学教师远程研修项目执行主任蒋敦杰、山东省中小学教师远程研修初中项目主任梁承锋和省基础教育课程研究中心副主任李红婷教授等领导和专家出席了本次高研班开班仪式。开幕式上,专家和领导就明确的指出这次高级研修班的任务是为xx年全省初中数学教师全员远程研修开发课例资源。
开幕式只有20分钟,很快就进入了任务培训状态。专家的报告大多是指向如何开展工作的,第一天培训就显示了任务的紧张。上午蒋教授的报告《教师研修转型与省骨干高级研修》到12点,下午首都师范大学王尚志教授《初中数学教学几个问题》到5:30,晚上梁承锋教授《xx初中骨干教师高级研修目标任务与课例研究变式应用》到了10:30尽管专家们都在强调如何开展工作,如何重要和辛苦,我们还是没有进入状态。但王尚志教授的报告,让大家很兴奋,他探讨的问题很实在,和一线教师的思考很接近,我们大多数人都不是第一次听王教授的报告,但看得出这次报告还是给大家带来了很多思考和收益。而且后续的工作证明,王尚志教授的报告给大家的`工作起了很好的指导作用。
第二天上午首席专家李红婷教授为大家作了题为《课例研究问题与研究任务——以“课例打磨”为载体的教学改进思路》的报告,李教授从教师培训方式的转型、专家型教师的成长路径、课例与课例设计、课例研究问题与研究问题、观课与评课等几个方面作了深入的解读。下午两位参加过课例研修教师的现身说法,让大家不但明白了基本流程和思路,也意识到了责任之大和任务之重。
伴随着两天的报告,是大家对关注问题的讨论和澄清。很快,我们六个组各自确定了自己的研究主题,并进行了去伪存真式的剥离和澄清,并撰写了各自的研修计划。首席专家李红婷教授的指导是非常重要的,而且贯穿任务全过程。李教授的指导具体、清楚,高屋建瓴而且不厌其烦,从早上到深夜,还处理着一些其他的工作,给大家带来了很大的感动。
更多的时间留给了以小组为单位的工作团队。我们小组由16位教师组成,有四位来自滨州,有三位来自东营,有九位来自烟台。其中由来自烟台市芝罘区教科研中心的林光老师任组长,由来自滨州市北镇中学实验初中部的邢成云老师和莱州市实验中学张延芳老师任指导老师,由来自东营市育才中学的刘江老师任组内专家,根据工作需要,组内又分为4个任务小组。
每一项任务都被分解为几个部分来讨论和撰写,然后再合成讨论,再经指导教师、组内专家把关后,再提交李教授审核,然后再审核定稿。课例打磨计划的制定,让大家完全进入了工作状态,也了解了理论研究、行动研究和载体呈现的重要性。授课任务由烟台三中分校的曲晓媛老师承担,她自我封闭了一天进行独立一备,其他人则对a视频脚本进行了细致的研讨,为便于在网络上呈现这个递进的过程,我们进行了录音和会议记录,想保持这个课例打磨的真实过程。在二备的过程中,大家各抒己见,充分讨论,很快达成了共识,二备很顺利,b脚本也很顺利完成了第一稿。
第一段集中研修,7天很快结束了。我们才发现自己的节奏是那么紧张。基本上是房间、餐厅和工作室,每天从早上到深夜。多数人连楼也没有走出去。第二阶段是分散研修和录课的时间。但每天大家还是第一时间上网交流和学习。尽管录课是在烟台,大家还是克服困难参加了实地的课堂观察。
12月21日,大家重聚济南,进行了观课交流,录制b视频和d视频,完成了网络记录和呈现任务,并撰写了课例学习导引等,最终一个完整的课例打磨资源,在大家的共同努力下顺利完成。
回顾整个过程,我们不得不说,每一项工作成果无不都是大家共同智慧的结晶。每个小过程,我们组内都进行详细而明确的分工,而且这种分工特别重视彼此的互助性。每位教师都非常积极认真的完成各自的任务和协助任务。任务是艰巨的,但结果也是令人振奋的。
三、不同的体会,共同的收获。
(一)这次研修,给了大家太多的感慨。
教学设计、上课、听课、评课本是教师最经常的工作,却因没有明确的问题引领,没有客观的观察统计,没有必要的理性思考,没有更深一步的行动和理论跟进,使我们的校本研修摆脱不了低效的困境,也浪费了老师们的时间,也使得大家的水平和课堂教学质量得不到提高。
聚焦问题,不仅需要理论的学习和思考,更需要真实、客观和科学的关注,更需要行动研究和逐步的跟进践行,在坚决问题中,成长自己,促进学生。
(二)这次研修,给了大家太多的感动。
参加研修的教师,大多是学校里的中坚力量,身兼多职,但大家对待这项工作,无不尽心尽力,尤其在当讨论的时候,都愿意把自己的观点拿出来,与别人分享,阐述自己的理由。彼此真诚的交流,常让人有无声处闻惊雷的感觉。与会的工作人员,也都尽可能的为别人服务。各位专家,尤其是李红婷教授更是耐心指导,精益求精。可以说,研修中,每一个人感动着别人的同时,也被别人感动着。雅斯贝尔斯说:“教育就是一朵云推动另一朵云,一棵树摇动另一棵树,一个灵魂唤醒另一个灵魂。”研修也正是这样。
我们有理由相信,教育战线上不乏执着的追梦人,不乏具有高尚情怀和追求的教育工作者。
(三)这次研修,给了大家太多的收获。
虽然整个研修,都是围绕任务展开的。但服务他人的同时,更成就的是自己。在课例打磨的过程中,每一位教师都有自己的收获。有的开阔了思路,有的提升了理论,有的净化了心灵。同时,也结交了很多业内同行。其实,同伴的交流是最大的财富。
有一种收获,可以穿透时空,长久的留在记忆里,那就是精神的成长和彼此的感动。
(四)这次研修,给了大家更多的思考。
日常教学研究,应该聚焦于教学有关的各类现实存在的问题,应该注意反复开放和聚焦,在解决和研究中,不断提出新的问题和实际的行动跟进研究。
我们感觉到,广大的一线教师都是有强烈的教育责任感、使命感和教育情怀的,对教育教学的追求是大家共同的心愿。通过本次高研班研修,我们认识到其实大道至简,道不远人。
让我们扎根校本,借助课例打磨,以客观、现实的视角,以理论学习和行动跟进为切入点,来提高我们的教育能力,提升我们的教育智慧吧。
上一篇:关于质检员的岗位年终工作总结
下一篇:物业的年终工作总结范文