欢迎访问易文君范文网!

圆心角、弧、弦、弦心距之间的关系(一)

小学作文 分享 时间: 加入收藏 我要投稿 点赞
1

圆心角、弧、弦、弦心距之间的关系(一)PI5易文君-文库范文网

教学目标:1、本节课使学生理解圆的旋转不变性;2、掌握圆心角、弧、弦、弦心距之间关系定理,并能应用这些关系定理证明一些问题.3、通过本节课的教学进一步培养学生观察、比较、归纳、概括问题的能力.教学重点:圆心角、弧、弦、弦心距之间关系定理.教学难点: “圆心角、弧、弦、弦心距之间的关系定理”中的“在同圆或等圆”的前提条件的理解.教学过程:一、新课引入:同学们请观察老师手中的圆形图片.ab为⊙o的直径.①我把⊙o沿着ab折叠,两旁部分互相重合,我们知道这个圆是一个轴对移图形.②若把⊙o沿着圆心o旋转180°时;两旁部分互相重合,这时我们可以发现圆又是一个中心对称图形.由学生总结圆不仅是轴对称图形,圆也是中心对称图形.若一个圆沿着它的圆心旋转任意一个角度,都能够与原来图形互相重合,这就是我们本节课要讲的内容:圆的一条特殊性质,即圆的旋转不变性.从圆的旋转不变性出发,推出圆心角、弧、弦、弦心距之间的关系,这是本节课我们所要学习的圆的又一条性质.二、新课讲解:首先出示圆形图片,引导学生观察:

下面我们来学习圆心角、弧、弦、弦心距之间的关系.提问两名中下生回答弧、弦的概念.接着教师一边画图,一边引导学生观察,由学生总结出:圆心角定义:顶点在圆心的角叫圆心角.弦心距定义:从圆心到弦的距离叫做弦心距.教师通过图片(图7-21)演示,从学生观察中得到圆的旋转不变性,到圆心角、弦心距的两个概念,其目的是要求学生学会从观察、比较到归纳分析知识的能力,这样可以充分调动学生学习几何的积极性. 教师为了使学生真正了解图中圆心角、弧、弦、弦心距之间的内在联系,有意识找两位差一些的学生回答:“指出圆心角∠aob所对的弧是______,所对的弦是______,所对弦的弦心距是______.接下来我们来讨论:在⊙o中,如果圆心角∠aob=∠a′ob′,那么它们所对的 和 ,弦ab和a′b′、弦心距om和om′是否也相等呢?教师利用电脑演示,一边讲解,我们把∠aob连同ab沿着圆心o旋转,使射线oa与oa′重合.由圆的旋转不变性,射线ob与ob′重合.因为∠aob=∠a′ob’,oa=oa′,ob=ob′,∴点a与点a′重合,ab与a′b′重合,从点o到ab的垂线om和点o到a′b′的垂线om′也重合.即, = ,ab=a′b′,om=om′.于是由一名学生总结定理内容,教师板书:定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.教师进一步提出这样一个问题:这个命题不加“在同圆或等圆”这个前题条件是否是一个真命题呢?学生分小组讨论,由小组代表发表自己的意见.教师概括如下:这个定理的题设是:“在同圆或等圆中”、圆心角相等;结论是:“所对的弧相等”、“所对弦相等”、“所对弦的弦心距相等”.值得注意的是:在运用这个定理时,一定不能丢掉“在同圆或等圆中”这个前提.否则也不一定有所对的弧、弦、弦心距相等这样的结论.

教师为了培养学生的思维批判性,请一名同学画一个只能是圆心角相等的这个条件的图,虽然∠aob=∠a′ob′,但由于oa≠oa′,ob≠ob′.通过举出反例强论对定理的理解.这时教师分别把两个圆心角用①表示;两条弧用②表示;两条弦用③表示;两条弦的弦心距用④表示,我们就可以得出这样的结论.2页,当前第112

精选图文

154951
领取福利

微信扫码领取福利

微信扫码分享

月会员
每天0次下载
1元/30天
直接下载
单次下载
0元/次
微信支付
支付宝支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭