日历中的方程(精选2篇)
日历中的方程 篇1
说课稿
一、理论依据
1、自主探索,合作学习的理论;
2、赏识教育的理论;
3、分层教学,使每一个学生都得到发展的理论;
4、学数学,用数学的理论;
5、视学生如伙伴,把教材当范本的理论;
6、学生是主体,教师是教学活动中“平等中的首席”的理论;
二、教学背景分析
本节课的内容是一元一次方程在现实生活中的应用,是关于日历数规律的再探索,本节为学生学习其他数字排列问题提供了思想与方法。在日常生活和第三章以及本章前两节课的学习中,学生已具备了运用日历规律解决简单问题的能力,初步形成了利用“方程”这一数学模型解决实际问题的数学思想,并且感知了列一元一次方程的关键是寻找等量关系。与小学学习的算术方法相比,代数方法还未能完全让学生接受并应用,而且对于刚刚接触方程解决实际问题,经历把实际问题转化为数学问题的转换过程,即建立方程模型的过程,学生理解有一定难度,而得到方程的解之后又要回到实际问题中检验其合理性,这些都给学生的学习带来一定的困难,教学中应作为重点处理。
三、关于教学目标的确定
根据数学课程标准关于日历中的方程的教学要求,结合学生的认知规律与已有的认知水平,本节课通过创设贴近学生生活的问题情境和设置有趣的师生互动、生生互动的小游戏让学生在民主、和谐的课堂氛围中,自主探究日历中的方程模型、列一元一次方程解决实际问题的一般方法及检验方程解的合理性;通过自主合作的互动探究及自编问题自己解决的过程,激发学生的参与意识与强烈的求知欲望,培养学生的问题意识与创新思维;同时,在探索解决一系列富有挑战性问题的过程中,发展学生的抽象、概括、分析问题和解决问题的能力,培养学生敢于面对挑战和勇于克服困难的意志。由此我将本节课的知识与能力,过程与方法,情感、态度与价值观的教学目标制定为:找等量关系、设未知数、列方程、解方程;经历探索过程、培养合作意识、提高实践能力;学数学、用数学、与伙伴合谐相处、培养迎难而上的坚强意志。
四、关于课堂结构及教学过程的设计
(一)创设情境,导入新课
通过设置“我到被誉为历史古都的西安旅游”这一贴近生活的问题情景,增加数学的趣味性,激活课堂。引导学生从生活实际中抽象出数学模型,感知“数学来源于生活并服务于生活”,进一步认识数学在人们日常生活中的重要作用,从而激发学好数学的强烈愿望。
(二)互动探究,发现新知
1、以学生为主体进行合作探究性学习,通过教师与学生、学生与学生之间互动的一个个小游戏,为学生创设了轻松愉悦的学习氛围,从而培养学生自主学习和主动与他人合作的意识。同时,让学生在教师的引领与组织下,经历知识的形成过程,加深对“建立方程模型”这一重要数学思想方法的认识与理解。
2、利用游戏,激发学生学习的兴趣。教师在游戏中走下讲台参与讨论,将学生视为合作伙伴,与学生一起按游戏规则开展活动,共同学习,拉近师生距离,融洽师生关系,从而激发每一个学生的参与热情,让学生大胆设想,勇于创新,敢于表现自己,使每一个学生都得到不同的发展。
3、游戏之后,穿插想一想、议一议、做一做等活动,将探索得到的结果,引导各小组的同学经过合情推理并在全班展示,进一步明确列方程解决问题的方法及步骤,实现将列方程、解方程等内容从感性认识到理性认识的升华。同时,通过交流多种解法,培养学生多角度思考问题的优良品质,进而更好地培养思维的广阔性。
(三)练习巩固,形成技能
1、系统论认为:学习是一个不断“反馈—纠正”的过程,教师根据捕捉的信息,及时进行调控,一方面为进一步深入学习做好准备,另一方面让学生明白知识间的相互联系,激发学生进一步深入探究的兴趣与热情。
2、自问自答式的小组竞赛,让每一个学生都能动起来,并以积极的态度投入到学习当中。在活动过程中,自己根据日历数的规律提出问题,由同伴回答,诱发创新欲望,增强协作能力,实现和谐共处的德育目标。
(四)畅谈收获,提高认识
课后设计的畅谈收获,把课堂还给了学生,简明扼要小结,当堂消化本节内容,达到学以致用的目的。让每一个学生都体验到成功的喜悦,学生的主体地位得以充分体现。
(五)布置作业
练习的设计本着尊重学生个体差异的原则,分层要求,由易到难,梯度推进。既保证学有困难的学生消化得了,又保证学有余力的学生吃得饱;通过变式练习鼓励学生从不同角度分析问题,培养学生的发散思维能力;克服就教材教教材的弊病,将教材当作范本,根据学生的实际情况,进行适当的拓展与补充,尤其是实践探究题,将课堂向课外进行了延伸,力求在深度和广度上有一个大的突破。
五、关于课堂评价的设想
课堂评价要真正起到激励学生学习的积极性与主动性的作用,教师必须对学生的表现作出合理恰当的评价,只要有合理的成分都能给予充分肯定,用发展与欣赏的眼光看学生,用充满善意与激情的语言鼓励学生,如:在学生的思维敏捷,回答准确无误时“你真棒” ;在学生对问题有了独到的见解时 “你真让老师感动”在学生回答不完整时 “如果考虑再周密一些,你的回答会更精彩”等等。同时,课堂评价还应尊重学生的个体差异性,及时捕捉学生闪光的火花,善于提炼学生答案中的合理成分,使知识条理化。
六、关于教学方法与教学媒体的选用
1、根据七年级学生特点,采取探究式,竞赛式教学。借助挂历,将日常生活融进数学课堂,使教与学相得益彰,达到二者的和谐统一。
2、为了能够对日历中的方程有一个直观的认识,采取多媒体课件展示一些抽象、难懂的问题,帮助学生认识和理解。同时,利用多媒体技术编写一系列有针对性的题目,根据课堂需要灵活出示,精讲精练,方便快捷,达到“减负提素”的目的。
日历中的方程 篇2
教学目标:通过分析问题中的数量关系,从而建立方程解决实际问题。教学重点和难点: 重点:是探索日历问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题 难点:是找等量关系教学过程:一、师生互动:1:请同学们在自己准备的日历上按横向任意圈出相邻的三个日期,并告诉老师这三个数的和,老师便能很快的告诉你这三天分别是几号。2:如果老师告诉你在日历上一个竖列上相邻的三个日期之和为60,你能知道这三天分别是几号吗? 问题:你发现其中的奥秘了吗?日一二三四五六 x-8
x-7
x x+1 x+6
x+7
( x – 7 ) + + = 60二、快点试一试: 1、在日历上,已知三个相邻数(横)的和为90,求这三天分别是几号?解:设中间一个数为x,则其余两个分别为 和 依题意得:_____________________________________ 解方程得: ______∴ =___________ =______________答:这三天分别是________________________________。2、在日历上,已知四个相邻数(横)的和为94,求这四天分别是几号?解:设最小的数为x,则其余三个分别为 , 和 依题意得:_____________________________________解方程得: ______∴ ______ , _______ , ______ ,答:这四天分别是________________________________。3、在日历上,三个相邻数(列)的和为54,求这三天分别是几号?解:设中间一个数为x,则其余两个分别为 和 依题意得:_____________________________________ 解方程得: ______∴ =___________ =______________答:这三天分别是________________________________。三、小组尝试:1、在各自的日历上,圈出一个竖列上相邻的 4个数。两人分别把自己所圈的四个数之和告诉对方,由同伴求出这四个数。 2、在各自的日历上,求出一个日期与这个日期的上、下、左、右5个日期的和,两人分别把自己所求的和告诉对方,由同伴求出中间这个日期.四、想一想:1、某月日历一个斜行上相邻的三个日期的和为36,那么这三个日期分别是多少?2、用正方形在某月日历中选取相邻四个数的和为76,那么这四个日期分别是多少? 五、归纳小结:运用一元一次方程解决实际问题必须注意:一是正确审清题意,找准“等量关系” ;二是列出方程正确求解; 三是判明方程解的合理性; 从上面的例子我们可以看到,运用方程解决实际问题的一般过程是:1. 审题:分析题意,找出题中的数量关系及其关系;2. 设元:选择一个适当的未知数用字母表示(例如x);3. 列方程:根据相等关系列出方程;4. 解方程:求出未知数的值;5. 检验:检验求得的值是否正确和符合实际情形,并写出答案.六、课堂检测:1、在日历上横着每两个数的差为________,竖着的差为________。2、小明去旅游一周,已知第一天与最后一天的和为15则小明出发的日期是__________号。3、小彬假期外出旅行三天,这三天的日期之和是63,则小彬是 号回家。4、小强比小芳糖的3倍还多10块,它们糖数之和为30块,那么小芳有糖( )。a.5块 b.6块 c.7块 d.8块5、设最小的数为 ,则日历上套出2×2个数中最大的数表示为( )。a. b. c. d. 6、某月日历一个竖列上相邻的三个日期的和为75,那么这三个日期分别是多少?7、某月日历一个竖列上相邻的三个日期的和为21,那么这三个日期分别是多少?8、某月日历一个竖列上相邻的三个日期的和为55,那么这三个日期分别是多少9、小彬假期外出旅行一周,这一周各天的日期之和是84,小彬是几号回家的?10、在某月日历上用一个2×3的矩形圈出6个数,使它们的和是81,求这6天分别是几号?11、如果下列各数分别是某月的三个日期之和,那么这三个日期可能是相邻的吗?如果相邻,求出这三个日期;如果不相邻,请说明理由。60 24 26 31 12、明明和亮亮都有利用暑假外出参加各种活动,回来后两人坐在一起进行交流,明明说:“我外出参加数学竞赛,走了一个星期,在这7天的日期之和是70,你知道我是几号出发的吗?”亮亮说:“我外出参加夏令营,去了7天,日期数的和再加上个月的月份数也是70,你知道我是几月几日回来的吗?两人各自思考一会儿,都回答出了对方提出的问题,你能列出方程解决这两个问题吗?
上一篇:7.1 轴对称现象
下一篇:12.1.1 条形图与扇形图