九年级上册《中位线》导学设计
【学习目标】 1. 探索并掌握三角形的中位线的概念、性质.2.在三角形中位线性质得到后,进一步探索梯形的中位线性质.3.经历探索三角形中位线性质的过程,发展学生观察能力及抽象思维能力.
【学习重点、难点】
重点:三角形中位线性质定理得证明及应用,进一步发展学生合乎逻辑的思考能力.
难点:从三角形中位线性质的探索过程中抽象出三角形中位线的性质,正确的书写证明过程.
【学习过程】
一、课前预习
1. 已知de是△abc的中位线,则△ade和△abc的面积之比是( )
(a) 1:1 (b) 1:2 (c) 1:3 (d ) 1:4
2.已知△abc中,d、e分别是ab、ac边上的中点,且de=3cm,则bc= cm
3.已知梯形的上底长为3cm,中位线长为6cm,则下底长为 cm。
4.已知三角形的三边长分别为6、8、10,则由它的三条中位线构成的三角形的面积为 ,周长为 。
5. 已知等腰梯形的中位线的长为,腰的长为,则这个等腰梯形的周长为 .
二、课堂学习
1. 三角形中位线: .
2. 三角形中位线性质
三角形中位线定理: .
定理符号语言的表达:
如图,在△abc中
∵d、e是ab、ac的中点
∴
(一)探索活动一:
已知: 如图,点d、e、分别为△abc边ab、ac的中点
求证:de∥bc且de=bc.
想一想:
① 一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
探索活动二:
已知:在梯形abcd中,ad∥bc,e、f分别是ab、dc的中点.
求证:ef∥bc,ef=(bc+ad).
梯形中位线性质: .共3页,当前第1页123
下一篇:正多边形和圆(二)