8.2消元(通用15篇)
8.2消元 篇1
一、创设情境,导入新课 七年级(3)班在上体育课时,进行投篮比赛,体育老师做好记录,并统计了在规定时间内投进n个球的人数分布情况,体育委员在看统计表时,不慎将墨水沾到表格上(如下表).进球数n012345投进球的人数127●●2 同时,已知进球3个和3个以上的人平均每人投进3.5个球;进球4个和4个以下的人平均每人投进2.5个球,你能把表格中投进3个球和投进4个球对应的人数补上吗? 二、师生互动,课堂探究 (一)指出问题,引发讨论 你能不能用二元一次方程组,帮助体育委员把表格中的两个数字补上呢? (经过学生思考、讨论、交流) (二)导入知识,解释疑难 1.例题讲解(见p109) 分析:如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦______公顷,3台大收割机和2台小收割机1小时收割小麦_______公顷. 解:设1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷.根据两种工作方式中的相等关系,得方程组 ①② 去括号,得 ②-①,得11x=4.4 解这个方程,得x=0.4 把x=0.4代入①,得y=0.2 这个方程组的解是 答:1台大收割机和1台小收割机1小时各收割小麦0.4公顷和0.2公顷. 2.上面解方程组的过程可以用下面的框图表示:
3.做一做 为了保护环境,某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1号电池和5号电池每节分别重多少克? 分析:如果1号电池和5号电池每节分别重x克,y克,则4克1号电池和5节5号电池总重量为4x+5y克,2节1号电池和3节5号电池总重量为2x+3y克.解:设1号电池每节重x克,5号电池每节重y克,根据题意可得①② ②×2-①,得y=20 把y=20代入②,得2x+3×20=240,x=90 所以这个方程组的解为 答:1号电池每节重90克,5号电池每节重20克. 4.练一练:p111练习第2、3题. (三)归纳总结,知识回顾 这节课我们经历和体验了列方程组解决实际问题的过程,体会到方程组是刻画现实世界的有效模型,从而更进一步提高了我们应用数学的意识及解方程组的技能. 作业:1.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用了1700元,获纯利2400元,种西红柿每亩用了1800元,获纯利2600元,问王大伯一共获纯利多少元?2.一旅游者从下午2时步行到晚上7时,他先走平路,然后登山,到山顶后又沿原路下山回到出发点,已知他走平路时每小时走4千米,爬山时每小时走3千米,下坡时每小时走6千米,问旅游者一共走了多少路?参考答案1.设王大析种了x亩茄子,y亩西红柿,根据题意得 解得 所以获纯利为10×2400+15×2600=63000元2.旅游者一共走了20千米路.设平路长x千米,坡路长y千米,依时间关系有 =5 ,即 (x+y)=5,2(x+y)=20.
8.2消元 篇2
一、知识与技能目标 1.用代入法、加减法解二元一次方程组.毛 2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想. 3.会用二元一次方程组解决实际问题. 4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力. 5.将解方程组的技能训练与实际问题的解决融为一体,进一步提高解方程组的技能. 二、过程与方法目标 1.通过探索二元一次方程组的解法的过程,了解二元一次方程组的“消元”思想,培养学生良好的探索习惯. 2.通过对具体实际问题分解,组织学生自主交流、探索,去发现列方程建模的过程,培养学生用数学的意识. 三、情感态度与价值观目标 1.在学生了解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,增强学习数学的信息。 2.培养学生合作交流,自主探索的良好习惯。 3.体会方程组是刻画现实世界的有效数学模型,培养应用数学的意识。 4.在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。新授课:一、创设情境,导入新课 甲、乙、丙三位同学是好朋友,平时互相帮助。甲借给乙10元钱,乙借给丙8元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三同学最终谁欠谁的钱,欠多少? 二、师生互动,课堂探究 (一)提高问题,引发讨论①② 我们知道,对于方程组 , 可以用代入消元法求解。 这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗? (二)导入知识,解释疑难 1.问题的解决 上面的两个方程中未知数y的系数相同,②-①可消去未知数y,得(2x+y)-(x+y)=40-22 即x=18,把x=18代入①得y=4。另外,由①-②也能消去未知数y,得(x+y)-(2x+y)=22-40 即-x=-18,x=18,把x=18代入①得y=4.①② 2.想一想:联系上面的解法,想一想应怎样解方程组 分析:这两个方程中未知数y的系数互为相反数,因此由①+②可消去未知数y,从而求出未知数x的值。 解:由①+②得 19x=11.6 x= 把x= 代入①得y=- ∴这个方程组的解为 3.加减消元法的概念 从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加减,就可以消去一个未知数,得到一个一元一次方程。 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。 4.例题讲解①② 用加减法解方程组 分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减两个方程不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。 解:①×3,得 9x+12y=48 ③ ②×2,得 10x-12y=66 ④ ③+④,得 19x=114 x=6 把x=6代入①,得3×6+4y=16 4y=-2, y=- 所以,这个方程组的解是 议一议:本题如果用加减法消去x应如何解?解得结果与上面一样吗? 解:①×5,得 15x+20y=80 ③ ②×3,得 15x-18=99 ④ ③-④,得 38y=-19 y=- 把y=- 代入①,得3x+4×(- )=16 3x=18 x=6 所以,这个方程组的解为 如果求出y=- 后,把y= 代入②也可以求出未知数x的值。 5.做一做①② 解方程组 分析:本题不能直接运用加减法求解,要进行化简整理后再求解。①② 解:化简方程组,得 ③-④,得4x=36 x=9 把x=9代入④(也可代入③,但不佳),得 10×9-3y=48 -3y=-42 y=14 ∴这个方程组的解为 点评:当方程组比较复杂时,应先化简,并整理成标准形式.本题还可以把2x+3y和2x-3y当成两个整体,用换元法,设2x+3y=a,2x-3y=b,转化为以a、b为未知数的二元一次方程组. 6.想一想 (1)加减消元法解二元一次方程组的基本思想是什么? (2)用加减消元法解二元一次方程组的主要步骤有哪些?师生共析:(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”. (2)用加减法解二元一次方程组的一般步骤: 第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数. 第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元. 第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑. (三)归纳总结,知识回顾 本节课,我们主要是学习了二元一次方程组的另一解法──加减法.通过把方程组中的两个方程进行相加或相减,消去一个未知数,化“二元”为“一元”. 作业:1.用加减法解下面方程组时,你认为先消去哪个未知数较简单,填写消元的方法.①② (1) ,消元方法_________.①② (2) ,消元方法_________.2.用加减法解下列方程组: (1) (2) (3) (4) 参考答案 1.(1)①×②-②消去y (2)①×2+②×3消去n 2.(1) (2) (3) (4)
8.2消元 篇3
8.2 消元(2)
教学目标 1、使学生熟练地掌握用代人法解二元一次方程组;
2、使学生进一步理解代人消元法所体现出的化归意识;
3、体会方程是刻画现实世界的有效数学模型.
教学难点 进一步理解在用代入消元法解方程组时所体现的化归意识。
知识重点 学会用代入法解未知数系数的绝对值不为1的二元一次方程组。
教学过程(师生活动) 设计理念
创设活动 1、 请你编一个能用代人法求解的二元一次方程组,2、 考考你的同3、 桌,4、 看看他是否掌握了.
2、结合你的解答,回顾用代人消元法解方程组的一般步骤. 本课是对代入消元法的巩固和深化,设置活动目的在于帮助学生迅速再现以往的知识经验,起到承上启下的作用。
探究新知 1、探索分析问题:
教材105页例2:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?
学生独立分析,列出方程组,全班交流.
解:设这些消毒液应分装x大瓶和y小瓶,则
2、引导学生思考:
问题1:此方程与我们前面遇到的二元一次方程组有什么区别?
(两个方程里的两个未知数系数的绝对值均不为1)
问题2:能用代入法来解吗?
问题3:选择哪个方程进行变形?消去哪个未知数?
在师生对话交流中,完成本题的板书示范.
3、解后反思:
(1)如何用代入法处理两个未知数系数的绝对值均不为1的二元一次方程组?
(2)列二元一次方程组解应用题的关键是:找出两个等量关系。
(3)列二元一次方程组解应用题的一般步骤分为:审、
设、列、解、检、答.
这里的反思突出了本课的重点,既帮助学生进一步完善代入法解题的步骤,又渗透解决实际问题的程序化思想。
巩固新知 练习1:用代入法解下列方程组.
(1)
(2)
两名学生演示,老师巡视,着重讲评第(2)小题.
第(2)题大多数同学的方法是:
由①得:x= ③ 把③代入②,…
这种方法计算量较大,容易出错.提出疑问:“是否还有更好的解答方法?通过自主探究后发现
由①得,6y=13-5x ④,把④代人②解得,
x=5,把x=5代入④解得:y=-2
∴
解后反思:
1、把6y看作一个整体,代入消元,使解方程变得简单许多.
2、拿到方程,要善于观察结构特点,不急于动笔.
练习2.分层练习:
学生必须先尝试完成b层练习,如果有困难,那么可以先完成a层练习后再做b层练习,顺利完成b层的同学可以尝试完成c层练习.
a层:
1.将二元一次方程5x+2y=3化成用含有x的式子表示y的形式是y= ;化成用含有y的式子表示x的形式是x= 。
2.已知方程组: ,指出下列方法中比较简捷的解法是( )
a.利用①,用含x的式子表示y,再代入②;
b利用①,用含y的式子表示x,再代入②;
c.利用②,用含x的式子表示y,再代入①;
d.利用②,用含x的式子表示x,再代人①;
b组
3、用代入法解方程组:
(1) (2)
c组
4、解方程组:
5、已知方程组 的解为 ,求a、b
练习3:实践活动
请你根据方程组 编一道符合实际的应用题。 整体代入无代入法的一种重要技巧,它实质就是换元的思想.若学生仍感困惑也可用新未知数去替换原来视为整体的那一部分.
这里安排分层次练习,让学生根据自身的需要自由选择不同的题目,在自我挑战中获得成就感教师根据实际情况,对不同的学生进行有针对性的指导,使不同的学生都有发展.这符合新课标的新理念:不同的人在数学上都能获得不同的发展.
小结与作业
小结提高 1、这节课你学到了哪些知识和方法?
比如:①对于用代入法解未知数系数的绝对值不是1的二元一次方程组,解题时,应选择未知数的系数绝对值比较小的一个方程进行变形,这样可使运算简便.②列方程解应用题的方法与步骤.③整体代入法等.
2、你还有什么问题或想法需要和大家交流? 让学生更加明确本节课的知识点,达到查漏补缺的目的。
布置作业 1、 做题:教科书112页习题8.2第2(3)(4)题,2、 第4题。
3、 选做题:教科书107页练习。
4、 备5、 选题:
(1) 解方程组
(2) 利用你学会的整体代入法解下面的方程组:
(3)小明外婆送来一篮鸡蛋.这篮鸡蛋最多只能装55只左右.小明3只一数,结果剩下1只,但忘了数多少次,只好重数.他5只一数,结果剩下2只,可又忘了数多少次.他准备再数时,妈妈笑着说:“不用数了,共有52只.”小明惊讶地问妈妈怎么知道的.妈妈笑而不答.同学们,你们知道这是为什么吗? 不同层次的学生根据自身的需要选择不同的备用题,达到因材施教的目的。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
代入法解二元一次方程组是一项重要的数学基本技能.它需要通过一定的训练才能达到熟练、准确的程度.而学生最反感的就是机械的训练.本课设计充分考虑到这点,因而使练习呈现形式的多样化.比如自编考题、分层练习、实践活动等不时地给学生以新鲜感,而无重复枯燥之感.
学习数学,要不断归纳总结才能事半功倍,借以提高技能,提高才智.代入消元法的消元思想体现了数学学习中“化未知为已知”的化归思想方法,它是极重要的数学思想法.因此本课在练习结束后,都及时安排反思,加强化归思想的总结和提炼,这对于提高学生的能力,发展学生的思维极有好处.
8.2消元 篇4
8.2 消元(4)
教学目标 1、熟练掌握加减消元法;
2、能根据方程组的特点选择合适的方法解方程组,
3、通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.
教学难点 教材中例4的数量关系较复杂,是本课的难点。
知识重点 能根据方程组的特点选择合适的方法解方程组。
教学过程(师生活动) 设计理念
创设情境 1、 复2、 习提问
解二元一次方程组有哪几种方法?它们的实质是什么?
2、播放动画《西游记》场景,配数学诗.
悟空顺风探妖踪,千里只行四分钟.
归时四分行六百,风速多少才称雄?
请一名学生解释诗歌大意:孙悟空顺风去查妖精的行踪,仅用4分钟就飞跃千里.逆风返回时4分钟走了600里,问风速是多少?
学生思考,根据题中等量关系,列出方程.
设悟空行走速度为x里/分,风速为y里/分,则
你会解这个方程组吗? 引例生动活波,激发学生的探究欲望,让学生在看、听、想的过程中愉悦地获得数学知识.
探究新知 学生独立完成后.在班级里交流解法.
解法一:①+②,消去y,得8x=1600
∴ x=200,代人①,得y=50
原方程组的解为
解法二:①-②,消去x。以下略.
解法三:整体代入.由①得:4x=1000-4y,代入②,消去x.
同理,也可消去y.
解法四:化简原方程组为 ,再利用加减消元,或代入消元均可.
反思:试着从各个角度比较“代入法”与“加减法”的共同点与不同点.(同学间相互交流)它们各适用于什么情况?
在学生回答的基础上,教师指出:当方程组中某一个未知数的系数绝对值是1或一个方程的常数项为零时,用代入法较方便;当两个方程中,同一个未知数的系数绝对值相等或成整倍数时,用加减法较方便.
练习1:根据方程组的特点选择更适合它的解法.你会怎样解呢?(第1,2小题完成后再出示第3小题.)
(1) (2)
(3)
第1小题用代入法,第2小题用加减法,都很明确,第3小题有争议.全班分成两部分.1、2大组用代入法做,3、4大组用加减法做.比较两解法的简便程度.
反思:当方程组中任一个未知数的系数绝对值不是1,且不成倍数关系时,一般经过变形利用加减法会使解法更简单. 尝试不同的解法,培养学生的发散性思维和择优意识。
解二元一次方程组不管采用哪种方法,都可以获得它的解,但根据题目形式的特点,选择不同的方法可以减少弯路,加快速度使解题过程简洁提高正确率.
实际应用 教材第109页例4.
2台大收割机和5台小收割机工作2小时收割小麦
3.6公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷,问:1台大收割机和1台小收割机1小时各收割小麦多少公顷?
分析:
问题1.列二元一次方程组解应用题的关键是什么?
(找出两个等量关系)
问题2.你能找出本题的等量关系吗?
2台大收割机2小时的工作量+5台小收割机2小时的工作量=3.6
3台大收割机5小时的工作量+2台小收割机5小时的工作量=8
问题3.怎么表示2台大收割机2小时的工作量呢?
设1台大收割机1小时收割小麦x公顷,则
2台大收割机1小时收割小麦_公顷,
2台大收割机2小时收割小麦_公顷.
现在你能列出方程了吗?
解后反思:应用题中,如何化解较复杂数量关系?
练习2:教科书第111页练习第3题应用题. 体会方程是刻画现实世界的有效数学模型。
小结与作业
小结提高 在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行。
本节课学习了哪些内容?你有哪些收获?
布置作业 8、 做题:教科书112页习题8.2第5、7题。
9、 选做题:教科书112页习题8.2第8题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、能根据教材编写思路,遵循学生的心理特点,创造性使用新教材中的问题情境(引入与111页练习3属同种数学模型),把教材中不动的问题情境转化为动的问题情境.
2、真正把课堂还给了学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和组织者.由于学生的个体差异,思维方式的不同,为了给学生创造个性化的学习空间,鼓励学生们用自己的方式去学习,把学习的主动权还给他们,让他们自己去探究不同的解题方法.通过例题分析、启发提问、集体讨论等形式,使学生能准确而迅速地确定解题方法从而突出了本课的重点、难点—选择适当方法求解二元一次方程组.
8.2消元 篇5
教学目标: 1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想――“消元”.3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.重点:用代入消元法解二元一次方程组.难点:探索如何用代入法将“二元”转化为“一元”的消元过程.教学过程:复习提问:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?解:设这个队胜x场,根据题意得 解得 x=18 则 20-x=2答:这个队胜18场,负2场.新课:在上述问题中,我们可以设出两个未知数,列出二元一次方程组, 设胜的场数是x,负的场数是y, x+y=20 2x+y=38那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x+y=20说明y=20-x,将第2个方程2x+y=38的y换为20-x,这个方程就化为一元一次方程 .二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想.归纳:上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.例1 把下列方程写成用含x的式子表示y的形式:(1)2x-y=3 (2)3x+y-1=0例2 用代入法解方程组 x-y=3 ① 3x-8y=14 ②例3 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.课堂练习:教科书第107页2、3、4题作业:教科书第111页第1题 第112页第2题
8.2消元 篇6
8.2 消元(3)
教学目标 1、掌握用加减法解二元一次方程组;
2、使学生理解加减消元法所体现的“化未知为已知”的化归思想方法;
3、体验数学学习的乐趣,在探索过程中品尝成功的喜悦,树立学好数学的信心.
教学难点 用“加减法“解二元一次方程组。
知识重点 学会用加减法解同一个未知数的系数绝对值不相等,且不成整数倍的二元一次方程组。
教学过程(师生活动) 设计理念
创设情境 王老师昨天在水果批发市场买了2千克苹果和4千克梨共花了14元,李老师以同样的价格买了2千克苹果和3千克梨共花了12元,梨每千克的售价是多少?比一比看谁求得快.
最简便的方法:抵消掉相同部分,王老师比李老师多买了1千克的梨,多花了2元,故梨每千克的售价为2元. 问题解决过程中蕴含了朴素的加减消元的思想.反映出,科学的每一次进步,都可以在实
际的实戏活动中找到依据.
探究新知 1、 解方程组
(由学生自主探究,并给出不同的解法)
解法一由①得:x= y代人方程②,消去x.
解法二:把2x看作一个整体,由①得2z=-1-3y,代入方程②,消去2x.
肯定两解法正确,并由学生比较两种方法的优劣.解法二整体代入更简便,准确率更高.
有没有更简洁的解法呢?教师可做以下启发:
问题1.观察上述方程组,未知数z的系数有什么点?(相等)
问题2.除了代入消元,你还有别的办法消去x吗?
(两个方程的两边分别对应相减,就可消去x,得到一个一元一次方程.)
解法三:①-②得:8y=-8,所以y=-1
y=-1代人①或②,得到x=1
所以原方程组的解为
2、变式一
启发:
问题1.观察上述方程组,未知数x的系数有什么特点?(互为相反数)
问题2.除了代人消元,你还有别的办法消去x吗?
(两个方程的两边分别对应相加,就可消去x,得到一个一元一次方程.)
解后反思:从上面的解答过程来看,对某些二元一次方程组可通过两个方程两边分别相加或相减,消去其中一个未知数,得到一个一元一次方程,从而求出它的解.这种解二元一次方程组的方法叫做加减消元法,简称加减法.
想一想:能用加减消元法解二元一次方程组的前提是什么?
两个二元一次方程中同一未知数的系数相反或相等.
3、变式二:
观察:本例可以用加减消元法来做吗?
必要时作启发引导:
问题1.这两个方程直接相加减能消去未知数吗?为什么?
问题2.那么怎样使方程组中某一未知数系数的绝对值相等呢?
启发学生仔细观察方程组的结构特点,发现x的系数成整数倍数关系.
因此:②×2,得4x-10y=14③
由①-③即可消去x,从而使问题得解.
(追问:③-①可以吗?怎样更好?)
4、变式三:
想一想:本例题可以用加减消元法来做吗?
让学生独立思考,怎样变形才能使方程组中某一未知数系数的绝对值相等呢?
分析得出解题方法:
解法1:通过由①×3,②×2,使关于x的系数绝对值相等,从而可用加减法解得.
解法2:通过由①×5,②×3,使关于y的系数绝对值相等,从而可用加减法解得.
怎样更好呢?
通过对比,使学生自己总结出应选择方程组中同一未知数系数绝对值的最小公倍数较小的未知数消元.
解后反思:用加减法解同一个未知数的系数绝对值不相等,且不成整数倍的二元一次方程组时,把一个(或两个)方程的两边乘以适当的数,使两个方程中某一未知数的系数绝对值相等,从而化为第一类型方程组求解.
使学生进一步巩固用“代入法”解二元一次方程组,并在体会“代入法"存在不足的同时,感受用“加减法”解二元一次方程组的优越性,并掌握“加减法”.
变式的意义在于从“减“的情形自然地过渡到”加“的情形,浑然一体。
例题及变式一解决用了加减法解某一未知数的系数的绝对值相等的二元一次方程组的问题。
变式二解决用加减法解某一未知数的系数成整数倍数关系的二元一次方程组。
变式三的设置目的是引导学生学会用加减法解同一个未知数的系数绝对值不相等,且不成整数倍的二元一次方程组.这是本课的难点.通过三个变式,搭建了降低难度的阶梯.
巩固新知 练习1:教科书第111页练习第1题
练习2:自行设计一些错题让学生判断。 收集学生的易错点,让学业生在改错中,自我诊断。
小结与作业
小结提高 回顾:用加减法解二元一次方程组的基本思想是什么?
这种方法的适用条件是什么?步骤又是怎样的? 引导学生思考、交流、梳理所学知识,培养学生的理性思维能力和良好的口头表达能力.
布置作业 6、 做题:教科书112页习题8.2第3题。
7、 选做题:教科书112页习题8.2第6题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
在学习加减法解题之前,学生们已经知道了代人法解二元一次方程组的核心是代人“消
元”,以使二元方程转化为一元方程求解.因此本节课例1的提出既是对代人法的复习,又是
加减法的探索.同时,也通过一题多解培养学生开放性思维.
解题方法应由学生自己去探索、发现,只有自己探索出来的,才是属于自己的,印象也就最深刻.本课设计没有直接告诉学生加减法解题的过程,而是通过引导学生观察不同方程组的结构特点,比较不同解法的优劣,自己探索发现解题的技巧.这样使学生在积极参与的学习中不仅能感受到学习的乐趣,更重要的是在这种积极求索的学习中,品尝到了成功的喜悦,促使其能力得到充分的发挥、提高.
思维发散,是培养创新思维的基础.透彻理解一个题,胜过盲目的多个演练题.本课设计采用变式教学,充分利用一道例题,由浅人深,不断地注人新元素,不时地给学生以新鲜感,避免了频繁地更换例题带给学生的枯燥与疲惫感,并且使整堂课节奏紧凑,一气呵成.的消元思想体现了数学学习中“化未知为已知”的化归思想方法,它是极重要的数学思想法.因此本课在练习结束后,都及时安排反思,加强化归思想的总结和提炼,这对于提高学生的能力,发展学生的思维极有好处.
8.2消元 篇7
8.2 消元(1)
教学目标 1、使学生学会用代人消元法解二元一次方程组;
2、理解代人消元法的基本思想体现的化未知为已知的化归思想方法;
3、逐步渗透矛盾转化的唯物主义思想.
教学难点 代入消元法的基本思想。
知识重点 用代入法解二元一次方程组。
教学过程(师生活动) 设计理念
创设情境
引入课题 播放学生篮球赛录像剪辑.
体育节要到了.篮球是初一(1)班的拳头项目.为了取得好名次,他们想在全部22场比赛中得到40分.已知每场比赛都要分出胜负,胜队得2分,负队得1分.那么初一(1)班应该胜、负各几场?
你会用二元一次方程组解决这个问题吗?
根据问题中的等量关系设胜x场,负y场,可以更容易地列出方程.
那么有哪些方法可以求得二元一次方程组的解呢? 问题情境是学生喜闻乐见的体育活动,增强求知欲,对所学知识产生亲切感。
探究新知 1、 引导:什么是二元一次方程组的解?(方程组中各个方程的公共解)
满足方程①的解有:
, , , ,
满足方程②的解有:
, , , …
这两个方程的公共解是
2、师:这个问题能用一元一次方程来解决吗?
学生思考并列出式子.
设胜x场,负(22-x)场,解方程
2x+(22-x) =40 ③
解法略.
观察:上面的二元一次方程组和一元一次方程有什么关系?
若学生还是感到困难,教师可通过提问进一步引导.
(1)在一元一次方程解法中,列方程时所用的等量关系是什么?
(2)方程组中方程②所表示的等量关系是什么?
(3)方程②与③的等量关系相同,那么它们的区别在哪里?
(4)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?
结合学生的回答,教师做出讲解.
由方程①进行移项得y=22-x,
由于方程②中的y与方程①中的y都表示负的场数,故可以把方程②中的y用(22-劝来代换,
即得2x+(22-x) =40.由此一来,二元化为一元了.
解得x=18.
问题解完了吗?怎样求y
将x=18代入方程y=22-x,得y=4.
能代入原方程组中的方程①②来求y吗?代入哪个方程更简便?
这样,二元一次方程组的解是
归纳:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.(板书课题)
可以采用观察与估算的方法.但很麻烦,故引发学生产生寻找新方法的需求.
以退为进的思想.
重视知识的发生过程,让学生了解代入消元法解二元一次方程组的过程及依据.体会未知向已知,陌生向熟悉转化这一重要思想—化归思想.
巩固新知 例1 用代入法解方程组
本题较简单,直接由学生板演,师生共同评价.
解:把①代入②,得
3(y+3)-8y=14
所以y=-1
把y=-1代人①,得x=2.
所以
解后反思.教师引导学生思考下列问题:
(1)选择哪个方程代人另一方程?其目的是什么?
(2)为什么能代?
(3)只求出一个未知数的值,方程组解完了吗?
(4)把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?
(5)怎样知道你运算的结果是否正确呢?
(与解一元一次方程一样,需检验.其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)
例2(为例1的变式)解方程组
分析:
(1)从方程的结构来看:例2与例1有什么不同?
例1是用x=y+3直接代人②的.而例2的两个方程都不具备这样的条件都不能直接代入另一条方程.
(2)如何变形?
把一个方程变形为用含x的式子表示y(或含y的式子表示x).
(3)那么选用哪个方程变形较简便呢?
通过观察,发现方程①中y的系数为-1,因此,可先将方程①变形,用含x的代数式表示y,再代入方程②求解.
解:由①得,y= ,③
把③代人②,得(问:能否代入①中?)
3x-8( )=14,
所以-x=-10,
x=10.
(问:本题解完了吗?把y=37代入哪个方程求x较简单?)
把x=10代入③,得
y=
所以y=2
所以
(本题可由一名学生口述,教师板书完成) 例1改编自教材105页例
1, 暂时省略了“用含一个未知数的式子去表示另一未知数”这一步骤,而2, 将其放在例2中介绍,3, 这样处理降低了难度,4, 利于分阶段达成本课的知识目标5, .本例的重点在于让学生掌握代入法的基本步骤.
例2进一步巩固代入法的步骤.重点在于说明解二元一次方程组的一些技巧问题,主要表现在如何选择一个方程,如何用含一个未知数的式子去表示另一未知数.
小结与作业
小结提高 合作交流:你从上面的学习中体会到代人法的基本思路是什么?主要步骤有哪些呢?与你的同伴交流.
学生畅所欲言,互相补充,小组派中心发言人进行总结发言.最后,由老师出示幻灯片.
代入法的实质是消元,使两个未知数转化为一个未知数一般步骤为:
①从方程组中选一个未知数系数比较简单的方程.将这个方程中的一个未知数,例如y,用含x的式子表示出来,也就是化成y=ax+b的形式;
②将y=ax+b代人方程组中的另一个方程中,消去y,得到关于二的一元一次方程;
③解这个一元一次方程,求出x的值;
④把求得的x值代人方程y=ax+b中,求出y的值,再写出方程组解的形式;
⑤检验得到的解是不是原方程组的解.这一步不是完全必要的,若能肯定解题无误,这一点可以省略。 及时梳理知识,形成模—用代入法解二元一次方程一般步骤。
反馈练习 1、 教材105页1.(补充:再改写成用含y的式表示x)
2、 教材105页练习2用代入法解方程组
3、 教材107页3应用题
布置作业 1、必做题:教科书111页习题8.2第1题,112页习题
2第2(1)(2)题.
2、选做题:教科书112页习题8.2第6题.
本课教育评注(课堂设计理念,实际教学效果及改进设想)
代入消元法体现了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟悉的问题化归为比较熟悉的问题,从而充分调动已有的知识和经验,用于解决新问题.基于这点认识,本课按照“身边的数学问题引入—寻求一元一次方程的解法—探索二元一次方程组的代入消元法—典型例题—归纳代入法的一般步骤”的思路进行设计.在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学.教师创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中.重视知识的发生过程.将设未知数列一元一次方程的求解过程与二元一次方程组相比较,从而得到二元一次方程组的代入(消元)解法,这种比较,可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成过程是十分重要的.
8.2消元 篇8
各位评委、老师:
大家好!我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。
一、说教材
(一)地位和作用
本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们较大的发挥空间。
(二) 课程学习目标
1、会用代入法解二元一次方程组。
2、初步体会解二元一次方程组的基本——“消元”。
3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的。
(三)教学重、难点:
用代入消元法解二元一次方程组 教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”。
二、说教法
针对本节特点,在教学过程中采用自主探究、师友互助交流的教学方法,由教师提出明确问题,学生积极参思考与讨论探究、师友合作交流,进行,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、师友合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。
三、说学法
本节学生在独立思考、自主探究中学习并对老师的问题展开有师友讨论与交流。如何用代入消元法将“二元”转化“一元”学生较难掌握,在提出消元后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。整个过程可以通过自主探究和师友合作来实现课程目标,此外,教学中,各个环节主要采用独学,对学,群学的方法,随堂练习时应引导学生通过自我反省小组来克服解题时的错误,必要时教师给予规范矫正。
四、说教学流程
(一)简单复习
学师学友面对面,学友说给学师听,什么是二元一次方程(组)?说完后两组师友展示给全班同学听
(二)自主学习:
出示学习目标:学生齐读一下,对本课学习有一个大体了解。
学生认真学习课本P91例题1上面的内容,并回答以下两个问题(电子白板出示)
1.什么叫消元 2.代入消元法
学习完成之后学生举手回答,教师。
(三)合作探究
电子白板出示问题:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
1.师友合作交流,探究新知
在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组
学生活动:分别列出一元一次方程和二元一次方程组,
设胜的场数是x 则负的场数为22-x,列方程得 2x+(22-x)=40
设胜的场数是x,负的场数是y,列方程组得
x+y=22
2x+y=40
2.自主探究,师友讨论
那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?
3.学生归纳,教师作补充:
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
把下列方程写成用含x的式子表示y的形式
(1)2x-y=5(2)4x+3y-1=0
学生活动:尝试自主完成,教师纠正。思考:能否用含y的式子来表示x呢?
4、教师来说方法:(2)用代入法解方程组
x-y=3
3x-8y=14
思路点拨:先观察这个方程组中哪一项系数较小,发现中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入消元。
解:由变形得 X=y+3
把代入,得3(y+3)-8y=14
解这个方程,得 y=-1
把y=-1代入,得X=2
所以这个方程组的解是 X=2
y=-1
如何检验得到的结果是否正确? 学生活动:口答检验。
步骤:变 代 求 写
(四)小试牛刀(给你一个展示的舞台)
解二元一次方程组
1、 2、
两名同学到黑板上板演,其他同学在练习本上认真做!(教师巡视学生)
完成后,教师:解二元一次方程组的方法步骤:
变 代 求 写
(五)归纳,知识回顾
1、通过这节课的学习活动,你有什么收获?
2、你认为在运用代入法解二元一次方程组时,应注意什么问题?
(六)布置作业
作业:中午:课本 第二题1、2小题
晚上:《作业与测试》。
8.2消元 篇9
各位评委老师:
大家好!今天我说课的题目是人教版七年级数学下册第八章《消元——二元一次方程组的解法》第一课时。
一、教材分析
1、教材的地位与作用:本节内容是在学生掌握了二元一次方程方程组的有关概念之后讲授的,用代入消元法解二元一次方程方程组是学生接触到的解方程组的第一种方法,消元体现了化未知为已知的重要思想。它是本章学习的重点和难点,也为解决现实问题提供了方便,同时为以后学习函数、线性方程组以及高次方程组奠定了基础。
2、教学目标:根据新课标要求以及学生的认知水平,我确定了如下了三维教学目标:
(1)知识与技能:
①会用代入法解二元一次方程组;
②能初步体会代入法解二元一次方程组的基本思想—“消元”。
(2)过程与方法:
①培养学生基本的运算技巧和能力;
②培养学生观察、比较、分析、综合能力,以及运用旧知识解决新问题的能力。
(3)情感、态度、价值观:鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生的合作交流意识与探索精神。
3、教学重点、难点:
重点:会用代入法解二元一次方程组。
难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便。探索如何用代入法将“二元”转化为“一元”的消元过程。
二、教法与学法
根据七年级学生的思维能力较单一,教学学习活动中归纳能力较差这一特点,本节课主要采取“探究发现式”教学方法,在教学过程中,采用“问题——实践——交流合作——说理——练习”的教学流程。老师对学生在课堂中表现予以帮助与评价,鼓励学生积极主动地参与教学过程。在探索、交流中获取新知。对于学生最重要的是让他们学会学习,因此教学中主要采用了教师引导学生动手实践,自主探索与合作交流的学习方法,在学习过程中充分调动学生从事数学活动的时间和空间,让学生乐于思考、勤于动手,自主的交流与合作,在实践中掌握解二元一次方程组的方法,从面获得新知。使每一个学生都能得到充分的发展。
三、教学过程
第一环节:创设情境,导入新课
引例:篮球联赛中,化育节要到了,蓝球是初一(1)班的拳头项目,为了取得好名次,他们想在全部22场比赛中得到40分。已知每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,那么初一(1)班胜负场数分别是多少?
设置问题:
(1)问题中有几个未知数?
(2)若设胜X场,如何列出一元一次方程求解?
(3)若设胜X场,负的为Y场,列出的二元一次方程组又是什么?
(4)列出来的一元一次方程我们会解,那么又如何去解这个二元一次方程组呢?
问题(2)和(3)让两个学生上黑板列出方程并解方程(1),而问题(3)让学生列出方程组即可,最后一问有意设置矛盾,让学生处于积极思维状态,但一时又难以给出正确的答案。从而引出本节课题:消元。
(通过问题引起学生注意,同时把学生带入新课的学习情境中,刺激学生对身边发生的问题所蕴含的数学知识的兴趣,注重数学来源于生活的理念.通过创设问题情境自然地揭示新课课题,激发学生求知欲望,同时为本节课的学习打下了良好的思想基础)
第二环节:师生合作,探究新知
问题1:因为胜负场数和是22场,所列的方程除了X+Y=22外还有其他哪种形式?
在学生回答出Y=22—X和X=22—Y,教师接着提问;由这个二元一次方程组
x+y=22①
2x+y=40②
能不能得到方程2X+(22—X)=38?如何得到?提出问题后,将学生分成小组讨论,教师深入学生的讨论中,引导学生观察。例如:从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察。学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上暴露知识发生过程:(1)Y=22—X
(2)用22—X替换方程2X+Y=40中的Y,即把Y=22—X代入2X+Y=40
问题2:
(1)这时,方程组转变为什么方程?哪个未知数的值可以先求出来?从哪里求?问题解完了吗?
(2)另一个未知数的值如何求?引导学生回答以上问题后,师生共同完成解答过程,并将结果与前面列一元一次方程求出的结果对照。
(通过问题的提出,给学生提供从事数学活动的机会,激发学生思考,体现数学知识的形成与过程,引导学生观察、比较,分析问题,鼓励学生思考、合作与交流,有利于学生理解与掌握相关知识与方法,形成良好的数学思维习惯。
通过演示,提出问题,让学生积极地动脑、动手、动口。在教师的引导下,学生通过观察、分析、比较并积极思考解决问题的方法,有助于学生理解和掌握由二元一次方程组化为一元一次方
程的过程,从而明确消元思想——由二元化为一元——由未知化为已知。)
第三环节:师生合作,发现规律
结论:这种将“二元”转化为“一元”的思想方法,我们称为消元法(并板书课题),在消元法中我们消去一个未知数,消元是我们解方程组的关键。进而提示:我们是如何消元的?引导学生去发现,把一个方程中的某一个未知数用另一个未知数表示后代入另一个方程,消去一个未知数,这种消元法我们称之为代入消元法。
(这样归纳后,学生对解方程组的思路就会较清晰,能够顺利地实现目标,同时也会对这种方法表现极大兴趣)
第四环节:典例分析,规范步骤
让学生自学课本97页例1,规范解题步骤,然后根据云图中提出的问题积极思考明确问题答案,此环节的目的是为了培养学生良好的自学习惯,体现学生的学习活动。然后教师提出问题:
①方程组是如何变形的?还有其他变形方法吗?
②将已求出的未知数的值代入哪一个方程解出另一个未知数更简便呢?
③你能先求出的值吗?
③何检验你求出的结果是否正确?
(通过提出这一系列的问题,使学生对代入消元法解二元一次方程组的步骤更加明确。通过另一种解法,让学生体会一题多解,从而达到举一反三的目的。选择适当变形方式,使运算简便。其目的是让学生意识到代入消元法有时可消去x有时可消去y。目的是为了培养学生良好的检验习惯。)
第五环节:熟练技能,升华提高
要求学生练习课本98页第一题(再加一问,用含的代数式表示,体会哪一种表示方法更为简便)。第2题采用学生板演,学生自我批改的形式。在掌握了本节课知识点的基础之上,完成当堂达标测试题。
第六环节:归纳小结,布置作业
1、从本节课中你学到了解二元一次方程组的哪种方法?其基本思想是什么?主要步骤有哪些?要求同学之间互相交流讨论。
2、必做题课本103页
选做题课本99页3,4
(作业分必做和选做是为了在巩固本节所学知识的前提下,考虑不同学生的需求。)
四、板书设计
8.2消元——二元一次方程组的解法(一)
Y=4
Y=22—x
变形
设胜了x场,负y场,x+y=22①代入
2x+y=40②
设胜了x场,则负
(22—x)场,则消元
2x+(22—x)=40③x=18(说明:由于此编辑窗口不能插入线条,所以图示中没有带箭头的线条,请谅解。)
五、时间分配
1、创设情景,引入新课(5分)2、师生合作,探求新知(10分)
3、师生合作,发现规律(3分)4、典例分析,规范步骤(10分)
5、熟练技能,升华提高(10分)6、归纳小结,作业布置(2分)
六、设计说明
本节课教学按照“身边的数学问题引入——寻求一元一次方程的解法——探索二元一次方程组的解法(代入消元法)——典型例题——归纳代入法”的思路进行设计。在教学过程中,充分调动学生的学习积极性,重视知识的发生过程,让学生认知内化,形成能力。将设未知数求一元一次方程的过程与解二元一次方程组的过程进行比较,在复习旧知识的同时获的新知,取得了良好的教学效果。
8.2消元 篇10
一、说教材分析
1、教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2、教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的`解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3、重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=22
2x+y=40
表示:
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程。
把两个方程合在一起,写成
x+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
8.2消元 篇11
各位评委、老师:
大家好!
我是来自丁庄镇中心初中的王红。今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。
下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。
一、教材分析
教材的地位和作用
本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本----“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。
2、教学目标
根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:
(1) 知识技能目标:1)会用代入法解二元一次方程组
2)初步体会解二元一次方程组的基本----消元
(2) 能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规。通过用代入消元法解二元一次方程组的训练,培养运算能力。
(3) 情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究。
3、重点、难点
根据学生的认知特点,我确立了本节课的重难点。
重点:用代入消元法解二元一次方程组
难点:探索如何用代入法将“二元”转化为“一元”的消元过程。
为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。
成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:
二、教学方法
我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。
三、学法指导
我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
四、
1、根据以上分析,我设计了以下六个教学环节:
2、教学过程
下面我就每一个教学环节,具体介绍我对本节课的教学设想。
环节一:创设情境
活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分 ,负1场得1 分,我班篮球队为了取得好名次 ,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?
学生活动:列方程或方程组解决问题
教师关注:学生是否能够多角度地考虑问题.
设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。
环节二、尝试发现
活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?
学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。
教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。
设计意图:在学生小组讨论的过程中充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。
活动三:小组展示
学生活动:分小组针对老师给出的题目,展示解二元一次方程组的方法。
教师关注:关注:学生用语言表达自己的观点的准确性与全面性。
设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。
活动四:再看转化、把握解题技巧
学生活动:观察转化过程中的技巧,并尝试。
设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。
环节三、 小组闯关
活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。
学生活动:做练习题
教师关注:学生解题的步骤的完整性,和解题的正确并及时的纠正错误
设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的。
活动六:闯关练习二,给出一个利用二元一次方程组解决的实际问题,拓展学生的思维。
学生活动:独立完成本题。
设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。
环节四、拓展升华
活动七:出示例题2.
学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。
教师关注:学生是否可以找到等量关系,列出方程组,解方程组。
设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。
环节五: 反思
活动八:我有哪些收获?
学生活动:学生归纳
教师关注:
(1)学生是否养成归纳、的好习惯;
(2)学生是否全面理解并掌握了本节课的知识。
环节六、布置作业
1、必做题:
P103 第2题 ⑵ ⑷, 第4题
2、 选做题:
设计意图:分层次,选择作业题,有利于学有余力的学生的发展。
最后我以著名数学家笛卡尔的一句话结束这节课。
五、板书设计
8.2二元一次方程组的解法
----代入消元法
1、二元一次方程组 一元一次方程
2、代入消元法的一般步骤:
3、方法:转化、消元、方程(组).
六、教学感想
在教学过程中,我始终:
坚持一个原则——教为主导,学为主体
坚守一个理念——先学后教,以学定教
贯穿一个——享受数学,快乐学习
以上是我对本节课的理解,有不当之处尽请各位老师批评指正。谢谢!
我的说课到此结束,谢谢大家
8.2消元 篇12
各位、老师你们好!今天我要讲的课题是人教版七年级(下)第八章第三节《实际问题与二元一次方程》的第一课时。首先,我对本节教材进行一些分析:
一、教材分析:
1、教材所处的地位和作用:
本节内容在全书及章节的地位是:《实际问题与二元一次方程》是数学教材七年级(下)第八章第三节内容。在学生已学习了解二元一次方程组的一般步骤的基础上,进一步以“探究”的形式讨论如何用二元一次方程组解决实际问题。以方程组为工具分析问题、解决问题(即建立方程模型)是全章的重点,同时也是难点。本节内容一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,使分析问题和解决问题的能力、创新和实践意识在更高层次上得到提高。可以说本节是二元一次方程组应用的延伸与拓广。
2、学情分析:
七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和初一上下册教材衔接的特点设计了这节课。
二、教学方法与教学手段:
(1)教法分析:
基于本节课内容的特点和七年级学生的心理特征,在教学中应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,不要代替他们思考,不要过早给出答案。鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思维,得到更大收获。
(2)学法分析:
教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际问题有着浓厚的兴趣,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过讨论和交流得到答案,激发学习兴趣,培养应用意识和发散思维。
三、教学过程及设计
教学目标
1经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;
2能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
3学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答;
4培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。
教学难点确定解题策略,比较估算与精确计算。
知识重点以方程组为工具分析,解决含有多个未知数的实际问题。
板书设计
8.3再探实际问题与二元一次方程
(1)实际问题设未知数列方程组数学问题(二元一次方程组)
教学过程(师生活动)
设计理念估时创设情境前面我们结合实际问题,讨论了用方程组表示问题中的条件以及如何解方程组.本节我们继续探究如何用方程组解决实际问题.
(出示问题)养牛场原有30只母牛和15只小牛,一天约需用饲料675 kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940 kg。饲养员李大叔估计平均每只母牛1天约需用饲料18~20 kg,每只小牛1天约需用饲料7~8 kg。你能否通过计算检验他的估计?
开门见山,直接提出本节学习目标,强化本章的中心问题.以学生身边的实际问题展开讨论,突出数学与现实的联系.探索分析解决问题学生思考、讨论.判断李大叔的估计是否正确的方法有两种:
一、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.
二、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.
学生在比较探究后发现用方法二较简便.
设问1:如果选择方法二,如何计算平均每只母牛和每只小牛1天各约需用饲料量?(有前面几节的知识准备,学生可以回答)列方程组求解.主要思路:引导学生探寻解题思路,并对各种方法进行比较,方法一主要是要估算的运用,而方法二是方程的应用。实际应用
实际问题
数学问题二元一次方程组设未知数列方程组学生先独立思考,然后师生共同讨论解题过程.
解:设平均每只母牛和每只小牛1天各约需用饲料xkg和ykg。
找出相等关系列方程组解这个方程组,得这就是说,平均每只母牛和每只小牛1天各约需用饲料20kg和5kg。饲养员李大叔对母牛的食量估计正确,对小牛的食量估计不正确.
分步到位,渗透模型化的。规范解题步骤,培养学生有条理地思考、表达的习惯。
让学生认识到检验的重要性,并学会正确作答。
拓广探索比较分析
设问2:以上问题还能列出不同的方程组吗?结果是否一致?
个别学生可能会列出如下方程组但结果一致
.比较分析,加深对方程组的认识。
课堂练习
1、《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?
2、悟空顺风探妖踪,千里只行四分钟。归时四分行六百,风速多少才称雄?顺风速度=悟空行走速度+风速逆风速度=悟空行走速度—风速
出示古典名题
一方面及时巩固用方程组解决实际问题的过程,另一方面让学生感受数学文化。
与作业提高
提问:通过这节课的学习,你知道用方程组解决实际问题有哪些步骤?
学生思考后回答、:
①设未知数.②找相等关系.③列方程组.④检验并作答.
以问题的形式出现,引导学生思考、交流,梳理所学知识,建立起符合自身认识特点的知识结构.训练口头表达能力,养成及时归纳的良好学习习惯.
布置作业
1、必做题:教科书116页习题8.3第1(1)3、5题。
2、选做题:教科书112页习题.8.3第8题。教后反思
8.2消元 篇13
一、说教材
首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。
(二)过程与方法
通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。
(三)情感态度价值观
感受数学与生活的密切联系,培养学习数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?
根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的课题《二元一次方程组》
这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。
(二)新知探索
接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。
活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。
学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。
此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。
教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。
活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。
在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。
师生共同总结出二元一次方程与二元一次方程组的定义。
列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。
活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。
在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。
教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。
得到方程组的解,回归情景得出实际问题的答案。
设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。
(三)课堂练习
接下来是巩固提高环节。
练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。
加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?
设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。
(四)小结作业
在课程的最后我会提问:今天有什么收获?
引导学生回顾:二元一次方程组的定义与二元一次方程组的解。
本节课的课后作业我设计为:
思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。
设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。
8.2消元 篇14
2.2.1 课时教案湖北口中学 张衍生 教学内容:课本 例1 例2教学目的:1、知识点:(1)掌握用代入法解二元一次方程组的步骤;(2)熟练运用代入法解二元一次方程组。2、能力训练点:(1)培养学生的分析能力;(2)训练运算技巧,养成检验习惯。3、德育渗透点:消元、化未知为已知的数学思想。教学重点:使学生会用代入法解二元一次方程组。教学难点 :灵活运用代入法的技巧。教学关键点:如何“消元”,把“二元”转化为“一元”。教学过程 :一、复习引入1、 学生回答:二元一次方程、二元一次方程组以及它的解这三个概念。2、 已知方程 ,先用含 的代数式表示 ,再用含y的代数式表示x,并比较哪一种形式比较简单。3、 选择题:二元一次方程组 的解是( )A、 B、 C、 D、 4、如果已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们一起来学习。二、讲授新课1、探究解法:利用上节课遇到的问题:要想求出1吨水费多少元,1立方米天然气费多少元,首先得利用我们上节课列出的方程组 先求水费和天然气费,才能求出1吨水费多少元,1立方米天然气费多少元。那怎样才能求出水费和天然气费呢?我们知道方程①和方程②中的x都表示小亮家用月份的水费,y都表示天然气费,因此方程②中的x,y分别与方程①中的x,y相同。于是我们从②式得 ③可以把③代入①式得 ④ 可得 ,把 代入③得 。所以此方程组的解是 于是1吨水费为2元,1立方米天然气费为1.7元。上面解二元一次方程组的方法,就是我们这节课要学习的方法——。你能简单说说用代入法解二元一次方程组的基本思想吗?同桌同学讨论,找学生回答,教师指正并引导学生归纳出:设法消去一个未知数,把二元一次方程组转化为一元一次方程。2、例1 解方程组 分析:(1)观察上面的方程组,应该如何消元?(把②代入①)(2)把②代入①后可消掉哪个未知数?(y)得到关于 的一元一次方程,求出 (3)求出x后代入哪个方程中求y比较简单?(②)学生依次回答问题后,教师板书(略)学生口答检验。3、例2 解方程组 分析:引导学生把①变形为 ③ ,把③代入②消去x解得y,再把y的值代入③求得x,得出此方程组的解。学生尝试完成例2,教师巡视指导,规范书写过程,最后检验。(略)检验后,师生共同讨论:(1)由①得到③后,再代入①可以吗?(不可以)为什么?(得到的是恒等式,不能求解)(2)把 代入①或②可以求出x吗?(可以)代入③有什么好处?(运算简便)学生活动:根据例1、例2的解题过程,尝试总结什么叫,用代入法解二元一次方程组的一般步骤,讨论后学生代表发言,之后,看课本21页,用几个字概括每个步骤。教师板书:(1)变形( )(2)代入消元(y)(3)解一元一次方程得(x)(4)把x代入 求解。4、练习:课本 (1)—(4)(找4名同学演板)三、巩固练习:练习册 1—5题四、小结:1、解二元一次方程组的思想:二元 一元。2、用代入法解二元一次方程组的步骤。五、作业 :课本 1题课后简记: 板书设计 :2.2.1 例1 例2 思想: 步骤:
8.2消元 篇15
在教育领域全面推进旨在培养学生创新能力的改革的同时,高中数学教学应注意对学生合情推理能力的培养.创新意识与合情推理在数学中并不矛盾,但在实际教学中有些教师把创新意识认为是一定要走新路、搞新的一套,放弃了传统的教学方法,就连同启发诱导式等好的教学方法也要否定了,笔者通过高三数学总复习中《用消元法求函数解析式》一节进行教学反思,试图说明如何从学生实际出发,因材施教,在合情推理中培养学生的创新能力.问题: 已知 ,求 f(x)学生对此问题无从下手.其主要有下列疑问:学生疑问: 1、能不能把等式右边的”f”提取公因数变为: 2、学生说:“我不知道函数f(x)的法则,无法写出f(x)的表达式。” 3、在等式中含未知数太多,学生认为有三个,即x、f(x)、和 4、若认为x已知,f(x)和 认为为两个未知数,那么两个变量无法用一个方程求出两个未知数。 问题分析1:学生对函数的表示的符号不理解。 问题分析2:学生认为只有一个等式是对已知理解不深刻,这样变形不出3 +2f(x)= 等式来求解。问题分析3、4:问此问题的学生是数学基本知识较好,他们理解了:一般地求数学的变量时,要列出对应的几个方程,才能求解。学生疑问中已经把f(x)和 认为是两个变量了。同时把x视为已知来求解。教师指导1:所求f(X)表达式可用猜想法预测f(x)结论可能是多项式。我作了这样的假设:设3f(x)=4x, 反问学生能否求出f(x)?学生很快的并且正确的回答了问题。2:继续追问:与3f(x)=4x相比,由于原已知条件中含 ,因此想办法消去它。但只有一个等式不能消去 ,所以把等式中的f(x)和 视为是两个变量来求解方程。3、等式是对所有的x都成立的恒等式,那么对x定义域内的所有值都成立,即x=1、2、3………等数字时有也成立。则用 换x得到等式3 +2f(x)= 4、联立两方程可求解出f(x)= 教学反思:反思1:对知识的内化,是应用知识的先决条件。解答此题时所出现的疑问,反映了学生不能把知识内化,对数学概念缺乏深刻理解。应该把f(x)中的x含义理解为在定义域内的所有值,并正确认识符号f(x)表示函数的科学性,因此加强数学概念的形成过程的教学,注意概念的发生过程,不会出现提取公因数等可笑的错误。反思2:猜想是创新的主要途径。我们从3f(x) =4x求得f(x)= 的过程得到了f(x)结论是一个多项式,那么是否能猜想或类推出原题结论也如此?而这个题目中,那怕是错误的猜想也能得到:“把x视为已知”的正确认识。反思3:平凡中蕴涵伟大,简单的逻辑会演绎出数学的完美。学生在解方程组时,深知:一般地求两个变量要列两个独立的方程,那么若把f(x) 和 视为两个变量,必然会想到变式,再想办法得到另一个独立方程。反思4:转化就是创新,转化就是创设条件。转化的过程是数学中培养学生坚定不移的毅力的过程,是培养学生对实践的顽强的拼搏精神的过程,它并不是回避矛盾,而是一种有异于“化整为零”的零的突破,使整体的完美。从一个等式到另一个等式,包含了应有的转化,揭示了事物的内在联系。从方程直接得到f(x)是化无知到认知,从认知到应用的整体突破。可见,合情推理并不是僵化和保守,而是创新的必备条件。注重平时教学中合情推理,让学生带着激进的情感,深情地体会数学的美,在数学美中享受生活,这不正是一次深刻的富有意义的创新吗