相反数(精选12篇)
相反数 篇1
教学目标
1.了解的意义,会求有理数的;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
的定义 的性质及其判定 的应用
三、教法建议
这节课教学的主要内容是互为的概念。
由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、的相关知识
1.的意义
(1)只有符号不同的两个数叫做互为,如-1999与1999互为。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。
(3)0的是0。也只有0的是它的本身。
(4)是表示两个数的相互关系,不能单独存在。
2.的表示
在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.的特性
若 互为,则 ,反之若 ,则 互为。
4.多重符号化简
(1)的意义是简化多重符号的依据。如 是-1的,而-1的为+1,所以 。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
第 1 2 3 4 页
相反数 篇2
教学目标
1.了解的意义,会求有理数的;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
的定义 的性质及其判定 的应用
三、教法建议
这节课教学的主要内容是互为的概念。
由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、的相关知识
1.的意义
(1)只有符号不同的两个数叫做互为,如-1999与1999互为。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。
(3)0的是0。也只有0的是它的本身。
(4)是表示两个数的相互关系,不能单独存在。
2.的表示
在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.的特性
若 互为,则 ,反之若 ,则 互为。
4.多重符号化简
(1)的意义是简化多重符号的依据。如 是-1的,而-1的为+1,所以 。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
(一)
一、素质教育目标
(一)知识教学点
1.了解:互为的几何意义.
2.掌握:给出一个数能求出它的.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的知道任何一个数都有它的,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语 的设置,充分发挥学生的主体地位.
2.学生学法:感性认识→理性认识→练习反馈→总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的.
2.难点:根据的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入 新课
1.互为的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5, -5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为.
[板书]2.3
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为(一个学生板演,其他学生自练)
师:这样的两个数即互为,你能试述具备什么特点的两数是互为?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为的两数,这时不急于总结互为的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的( )
(2)5是-5的( )
(3)与互为( )
(4)-5是( )
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对“互为”的理解,提高学生全面分析问题的能力.
师:0的是0.
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的.
2.分别说出9,-7,0,-0.2的.
3.指出-2.4,,-1.7,1各是什么数的?
4.的是什么?
学生活动:1题同桌互相订正,2、3题抢答.
【教法说明】1题注意培养学生运用数形结合的方法理解的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为.2、3、4题是对的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为”这一概念,又得出一个非常代数性的结论“的是.”
[板书]a的是-a.
师:的是,可表示任意数—正数、负数、0,求任意一个数的就可以在这个数前加一个“-”号.
提出问题:若把分别换成+5,-7,0时,这些数的怎样表示?
.
.
.
提出问题:前面加“-”号表示的,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答.
【教法说明】利用的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的是,那么+5,7,0的怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习
(出示投影3)
1.是______________的,.
2.是_____________的,.
3.是_____________的,.
4.是_____________的,.
学生活动:思考后口答.
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.
【教法说明】根据以上题目学生对一数前面加“-”号表示这数的和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.
巩固练习:
1.例题2 简化-(+3)-(-4)的符号.
2.简化下列各数的符号
3.自己编题
学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.
(三)归纳小结
师:我们这节课学习了,归纳如下:
1.________________的两个数,我们说其中一个是另一个的.
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出.
【教法说明】通过问题形式归纳出本节的重点.
(四)回顾反馈
1.-1.6是__________的,
____________的是0.3.
2.下列几对数中互为的一对为( ).
a.和b.与c.与
3.5的是________________;的是___________;的是________________.
4.若,则;若,则.
5.若是负数,则是___________数;若是负数,则是___________数.
学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.
【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对概念的理解情况,对学有余力的同学是一个提高.
八、随堂练习
1.填表
原数
0
3
-7
倒数
-1
2.选择题
(1)下列说法中,正确的是( )
a.一个数的一定是负数
b.两个符号不同的数一定是
c.等于本身的数只有零
d.的是-2
(2)下列各组九中,是互为的组数有( )
①和②-(-1)和+(-1)
③-(-2)和+(+2) ④和
a.4组 b.3组 c.2组 d.1组
(3)下列语句中叙述正确的是( )
a.是正数
b.如果,那么
c.如果,那么
d.如果是负数,那么是正数
九、布置作业
(一)必做题:课本第61页a组2、3.
(二)选做题:课本第62页b组1、2.
十、板书设计
2.3
1.只有符号不同的两个数其中一个是另一个的.
2.0的是0
3.的是. 例,……
随堂练习答案
1.略 2.c b d
作业 答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.
(二)
教学目标
1.使学生理解的意义;
2.使学生掌握求一个已知数的;
3.培养学生的观察、归纳与概括的能力.
教学重点和难点
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
课堂教学过程 设计
一、从学生原有的认知结构提出问题
二、师生共同研究的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的唯一的数.
三、运用举例变式练习
例1 (1)分别写出9与-7的;
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的.
1.当a=7时,-a=-7,7的是-7;
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习
1.填空:
(1)+1.3的是______; (2)-3的是______;
(5)-(+4)是______的; (6)-(-7)是______的.
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的.
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
课堂教学设计说明
教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的.由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“<”号排列出来.
分析:由图看出,a>1,-1<b<0,|b|<1<|a|.-a,-b分别是a和b的,数轴上表示a和-a,b和-b的点都关于原点对称,它们到原点的距离分别相等,用这个性质在数轴上画出表示-a,-b的点,它们的大小也就排列出来了.
解:在数轴上画出表示-a、-b的点:
由图看出:-a<-1<b<-b<1<a.
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
相反数 篇3
1.2.3 相反数
教学目标1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3, 体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征
知识重点相反数的概念
教学过程(师生活动)
设计理念
设置情境
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类4, -2,-5,+2允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。(引导学生观察与原点的距离)思考结论:教科书第13页的思考再换2个类似的数试一试。归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力培养学生的观察与归纳能力,渗透数形思想
深化主题提炼定义给出相反数的定义问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?学生思考讨论交流,教师归纳总结。规律:一般地,数a的相反数可以表示为-a思考:数轴上表示相反数的两个点和原点有什么关系?练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。深化相反数的概念;“零的相反数是零”是相反数定义的一部分。强化互为相反数的数在数轴上表示的点的几何意义
给出规律
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?学生交流。分别表示+5和-5的相反数是-5和+5练一练:教科书第14页第二个练习 利用相反数的概念得出求一个数的相反数的方法
小结与作业
课堂小结1, 相反数的定义2, 互为相反数的数在数轴上表示的点的特征3, 怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1, 必做题 教科书第18页习题1.2第3题2, 选做题 教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想. 2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法. 3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
附板书:1.2.3 相反数
相反数 篇4
教学目标
1.了解的意义,会求有理数的;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
的定义 的性质及其判定 的应用
三、教法建议
这节课教学的主要内容是互为的概念。
由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、的相关知识
1.的意义
(1)只有符号不同的两个数叫做互为,如-1999与1999互为。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。
(3)0的是0。也只有0的是它的本身。
(4)是表示两个数的相互关系,不能单独存在。
2.的表示
在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.的特性
若 互为,则 ,反之若 ,则 互为。
4.多重符号化简
(1)的意义是简化多重符号的依据。如 是-1的,而-1的为+1,所以 。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
(一)
一、素质教育目标
(一)知识教学点
1.了解:互为的几何意义.
2.掌握:给出一个数能求出它的.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的知道任何一个数都有它的,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语 的设置,充分发挥学生的主体地位.
2.学生学法:感性认识→理性认识→练习反馈→总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的.
2.难点:根据的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入 新课
1.互为的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5, -5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为.
[板书]2.3
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为(一个学生板演,其他学生自练)
师:这样的两个数即互为,你能试述具备什么特点的两数是互为?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为的两数,这时不急于总结互为的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的( )
(2)5是-5的( )
(3)与互为( )
(4)-5是( )
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对“互为”的理解,提高学生全面分析问题的能力.
师:0的是0.
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的.
2.分别说出9,-7,0,-0.2的.
3.指出-2.4,,-1.7,1各是什么数的?
4.的是什么?
学生活动:1题同桌互相订正,2、3题抢答.
【教法说明】1题注意培养学生运用数形结合的方法理解的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为.2、3、4题是对的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为”这一概念,又得出一个非常代数性的结论“的是.”
[板书]a的是-a.
师:的是,可表示任意数—正数、负数、0,求任意一个数的就可以在这个数前加一个“-”号.
提出问题:若把分别换成+5,-7,0时,这些数的怎样表示?
.
.
.
提出问题:前面加“-”号表示的,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答.
【教法说明】利用的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的是,那么+5,7,0的怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习
(出示投影3)
1.是______________的,.
2.是_____________的,.
3.是_____________的,.
4.是_____________的,.
学生活动:思考后口答.
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.
【教法说明】根据以上题目学生对一数前面加“-”号表示这数的和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.
巩固练习:
1.例题2 简化-(+3)-(-4)的符号.
2.简化下列各数的符号
3.自己编题
学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.
(三)归纳小结
师:我们这节课学习了,归纳如下:
1.________________的两个数,我们说其中一个是另一个的.
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出.
【教法说明】通过问题形式归纳出本节的重点.
(四)回顾反馈
1.-1.6是__________的,
____________的是0.3.
2.下列几对数中互为的一对为( ).
a.和b.与c.与
3.5的是________________;的是___________;的是________________.
4.若,则;若,则.
5.若是负数,则是___________数;若是负数,则是___________数.
学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.
【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对概念的理解情况,对学有余力的同学是一个提高.
八、随堂练习
1.填表
原数
0
3
-7
倒数
-1
2.选择题
(1)下列说法中,正确的是( )
a.一个数的一定是负数
b.两个符号不同的数一定是
c.等于本身的数只有零
d.的是-2
(2)下列各组九中,是互为的组数有( )
①和②-(-1)和+(-1)
③-(-2)和+(+2) ④和
a.4组 b.3组 c.2组 d.1组
(3)下列语句中叙述正确的是( )
a.是正数
b.如果,那么
c.如果,那么
d.如果是负数,那么是正数
九、布置作业
(一)必做题:课本第61页a组2、3.
(二)选做题:课本第62页b组1、2.
十、板书设计
2.3
1.只有符号不同的两个数其中一个是另一个的.
2.0的是0
3.的是. 例,……
随堂练习答案
1.略 2.c b d
作业 答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.
(二)
教学目标
1.使学生理解的意义;
2.使学生掌握求一个已知数的;
3.培养学生的观察、归纳与概括的能力.
教学重点和难点
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
课堂教学过程 设计
一、从学生原有的认知结构提出问题
二、师生共同研究的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的唯一的数.
三、运用举例变式练习
例1 (1)分别写出9与-7的;
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的.
1.当a=7时,-a=-7,7的是-7;
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习
1.填空:
(1)+1.3的是______; (2)-3的是______;
(5)-(+4)是______的; (6)-(-7)是______的.
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的.
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
课堂教学设计说明
教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的.由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“<”号排列出来.
分析:由图看出,a>1,-1<b<0,|b|<1<|a|.-a,-b分别是a和b的,数轴上表示a和-a,b和-b的点都关于原点对称,它们到原点的距离分别相等,用这个性质在数轴上画出表示-a,-b的点,它们的大小也就排列出来了.
解:在数轴上画出表示-a、-b的点:
由图看出:-a<-1<b<-b<1<a.
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
相反数 篇5
教学目标
1.了解的意义,会求有理数的;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
的定义 的性质及其判定 的应用
三、教法建议
这节课教学的主要内容是互为的概念。
由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、的相关知识
1.的意义
(1)只有符号不同的两个数叫做互为,如-1999与1999互为。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。
(3)0的是0。也只有0的是它的本身。
(4)是表示两个数的相互关系,不能单独存在。
2.的表示
在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.的特性
若 互为,则 ,反之若 ,则 互为。
4.多重符号化简
(1)的意义是简化多重符号的依据。如 是-1的,而-1的为+1,所以 。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
(一)
一、素质教育目标
(一)知识教学点
1.了解:互为的几何意义.
2.掌握:给出一个数能求出它的.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的知道任何一个数都有它的,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语 的设置,充分发挥学生的主体地位.
2.学生学法:感性认识→理性认识→练习反馈→总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的.
2.难点:根据的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入 新课
1.互为的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5, -5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为.
[板书]2.3
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为(一个学生板演,其他学生自练)
师:这样的两个数即互为,你能试述具备什么特点的两数是互为?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为的两数,这时不急于总结互为的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的( )
(2)5是-5的( )
(3)与互为( )
(4)-5是( )
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对“互为”的理解,提高学生全面分析问题的能力.
师:0的是0.
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的.
2.分别说出9,-7,0,-0.2的.
3.指出-2.4,,-1.7,1各是什么数的?
4.的是什么?
学生活动:1题同桌互相订正,2、3题抢答.
【教法说明】1题注意培养学生运用数形结合的方法理解的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为.2、3、4题是对的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为”这一概念,又得出一个非常代数性的结论“的是.”
[板书]a的是-a.
师:的是,可表示任意数—正数、负数、0,求任意一个数的就可以在这个数前加一个“-”号.
提出问题:若把分别换成+5,-7,0时,这些数的怎样表示?
.
.
.
提出问题:前面加“-”号表示的,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答.
【教法说明】利用的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的是,那么+5,7,0的怎样表示呢?”学生的思维由一般再引到特殊能答出-(+5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.
巩固练习
(出示投影3)
1.是______________的,.
2.是_____________的,.
3.是_____________的,.
4.是_____________的,.
学生活动:思考后口答.
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.
【教法说明】根据以上题目学生对一数前面加“-”号表示这数的和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.
巩固练习:
1.例题2 简化-(+3)-(-4)的符号.
2.简化下列各数的符号
3.自己编题
学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.
(三)归纳小结
师:我们这节课学习了,归纳如下:
1.________________的两个数,我们说其中一个是另一个的.
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出.
【教法说明】通过问题形式归纳出本节的重点.
(四)回顾反馈
1.-1.6是__________的,
____________的是0.3.
2.下列几对数中互为的一对为( ).
a.和b.与c.与
3.5的是________________;的是___________;的是________________.
4.若,则;若,则.
5.若是负数,则是___________数;若是负数,则是___________数.
学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.
【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对概念的理解情况,对学有余力的同学是一个提高.
八、随堂练习
1.填表
原数
0
3
-7
倒数
-1
2.选择题
(1)下列说法中,正确的是( )
a.一个数的一定是负数
b.两个符号不同的数一定是
c.等于本身的数只有零
d.的是-2
(2)下列各组九中,是互为的组数有( )
①和②-(-1)和+(-1)
③-(-2)和+(+2) ④和
a.4组 b.3组 c.2组 d.1组
(3)下列语句中叙述正确的是( )
a.是正数
b.如果,那么
c.如果,那么
d.如果是负数,那么是正数
九、布置作业
(一)必做题:课本第61页a组2、3.
(二)选做题:课本第62页b组1、2.
十、板书设计
2.3
1.只有符号不同的两个数其中一个是另一个的.
2.0的是0
3.的是. 例,……
随堂练习答案
1.略 2.c b d
作业 答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
(二)
教学目标
1.使学生理解的意义;
2.使学生掌握求一个已知数的;
3.培养学生的观察、归纳与概括的能力.
教学重点和难点
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
课堂教学过程设计
一、从学生原有的认知结构提出问题
二、师生共同研究的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的唯一的数.
三、运用举例变式练习
例1 (1)分别写出9与-7的;
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的.
1.当a=7时,-a=-7,7的是-7;
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习
1.填空:
(1)+1.3的是______; (2)-3的是______;
(5)-(+4)是______的; (6)-(-7)是______的.
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的.
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
课堂教学设计说明
教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的.由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“<”号排列出来.
分析:由图看出,a>1,-1<b<0,|b|<1<|a|.-a,-b分别是a和b的,数轴上表示a和-a,b和-b的点都关于原点对称,它们到原点的距离分别相等,用这个性质在数轴上画出表示-a,-b的点,它们的大小也就排列出来了.
解:在数轴上画出表示-a、-b的点:
由图看出:-a<-1<b<-b<1<a.
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
相反数 篇6
教学目标
1.了解的意义,会求有理数的;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
的定义 的性质及其判定 的应用
三、教法建议
这节课教学的主要内容是互为的概念。
由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、的相关知识
1.的意义
(1)只有符号不同的两个数叫做互为,如-1999与1999互为。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。
(3)0的是0。也只有0的是它的本身。
(4)是表示两个数的相互关系,不能单独存在。
2.的表示
在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.的特性
若 互为,则 ,反之若 ,则 互为。
4.多重符号化简
(1)的意义是简化多重符号的依据。如 是-1的,而-1的为+1,所以 。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
(一)
一、素质教育目标
(一)知识教学点
1.了解:互为的几何意义.
2.掌握:给出一个数能求出它的.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的知道任何一个数都有它的,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语 的设置,充分发挥学生的主体地位.
2.学生学法:感性认识→理性认识→练习反馈→总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的.
2.难点:根据的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入 新课
1.互为的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5, -5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为.
[板书]2.3
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为(一个学生板演,其他学生自练)
师:这样的两个数即互为,你能试述具备什么特点的两数是互为?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为的两数,这时不急于总结互为的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的( )
(2)5是-5的( )
(3)与互为( )
(4)-5是( )
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对“互为”的理解,提高学生全面分析问题的能力.
师:0的是0.
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的.
2.分别说出9,-7,0,-0.2的.
3.指出-2.4,,-1.7,1各是什么数的?
4.的是什么?
学生活动:1题同桌互相订正,2、3题抢答.
【教法说明】1题注意培养学生运用数形结合的方法理解的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为.2、3、4题是对的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为”这一概念,又得出一个非常代数性的结论“的是.”
[板书]a的是-a.
师:的是,可表示任意数—正数、负数、0,求任意一个数的就可以在这个数前加一个“-”号.
提出问题:若把分别换成+5,-7,0时,这些数的怎样表示?
.
.
.
提出问题:前面加“-”号表示的,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答.
【教法说明】利用的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的是,那么+5,7,0的怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习
(出示投影3)
1.是______________的,.
2.是_____________的,.
3.是_____________的,.
4.是_____________的,.
学生活动:思考后口答.
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.
【教法说明】根据以上题目学生对一数前面加“-”号表示这数的和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.
巩固练习:
1.例题2 简化-(+3)-(-4)的符号.
2.简化下列各数的符号
3.自己编题
学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.
(三)归纳小结
师:我们这节课学习了,归纳如下:
1.________________的两个数,我们说其中一个是另一个的.
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出.
【教法说明】通过问题形式归纳出本节的重点.
(四)回顾反馈
1.-1.6是__________的,
____________的是0.3.
2.下列几对数中互为的一对为( ).
a.和b.与c.与
3.5的是________________;的是___________;的是________________.
4.若,则;若,则.
5.若是负数,则是___________数;若是负数,则是___________数.
学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.
【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对概念的理解情况,对学有余力的同学是一个提高.
八、随堂练习
1.填表
原数
0
3
-7
倒数
-1
2.选择题
(1)下列说法中,正确的是( )
a.一个数的一定是负数
b.两个符号不同的数一定是
c.等于本身的数只有零
d.的是-2
(2)下列各组九中,是互为的组数有( )
①和②-(-1)和+(-1)
③-(-2)和+(+2) ④和
a.4组 b.3组 c.2组 d.1组
(3)下列语句中叙述正确的是( )
a.是正数
b.如果,那么
c.如果,那么
d.如果是负数,那么是正数
九、布置作业
(一)必做题:课本第61页a组2、3.
(二)选做题:课本第62页b组1、2.
十、板书设计
2.3
1.只有符号不同的两个数其中一个是另一个的.
2.0的是0
3.的是. 例,……
随堂练习答案
1.略 2.c b d
作业 答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.
(二)
教学目标
1.使学生理解的意义;
2.使学生掌握求一个已知数的;
3.培养学生的观察、归纳与概括的能力.
教学重点和难点
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
课堂教学过程 设计
一、从学生原有的认知结构提出问题
二、师生共同研究的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的唯一的数.
三、运用举例变式练习
例1 (1)分别写出9与-7的;
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的.
1.当a=7时,-a=-7,7的是-7;
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习
1.填空:
(1)+1.3的是______; (2)-3的是______;
(5)-(+4)是______的; (6)-(-7)是______的.
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的.
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
课堂教学设计说明
教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的.由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“<”号排列出来.
分析:由图看出,a>1,-1<b<0,|b|<1<|a|.-a,-b分别是a和b的,数轴上表示a和-a,b和-b的点都关于原点对称,它们到原点的距离分别相等,用这个性质在数轴上画出表示-a,-b的点,它们的大小也就排列出来了.
解:在数轴上画出表示-a、-b的点:
由图看出:-a<-1<b<-b<1<a.
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
相反数 篇7
一、学习目标
1了解相反数的概念。
2给一个数,能求出它的相反数。
3根据a的相反数是-a,能把多重符号化成单一符号。
二、教学过程
师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。
生:人人动用手画数轴,独立思考后,在小组内进行交流。
师:深入了解各小组的交流情况,讨论结束后,提问1、2人,帮助全班同学理清思考问题的思路。
师:请同学们阅读课本,知道什么叫相反数,给出一个数能求出它的相反数。
生:阅读课本第59页,并完成练习一第(1)~(4)题。
师:提问检查学生的学习情况,强调“0的相反数是0”也是相反数定义的一部分。
师:请同学们先想一想,a可以表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习情况。
师:认真了解各小组的学习情况,特别是对简化符号的题和学习困难的学生,要重点对待。
生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。
师:请同学们先小结一下本节课的学习内容。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除A组第2题外都可以直接说出结果)
生:小结。完成习题1.3 中的有关练习。
练习
1在下列各式中分别填上适当的符号,使等号左右两端的数相等;
-(+19)=____________19;
____________10.2=+(+10.2);
____________(+12)=-12;
____________(-25)=+25。
2把下面的多重符号化成单一符号:
-[-(-0.3)]=____________;
-[-(+4)]=____________;
+[+(+5)]=____________;
-[+(-50)]=____________。
3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。
4下面的说法对不对?请举列说明。
(1)一个有理数的相反数的相反数就是这个有理数本身。
(2)一个有理数的相反数一定比原来的有理数小。
(3)-a是一个负数。
作业
在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。
相反数 篇8
【学习目标】
1.使学生能说出相反数的意义
2.使学生能求出已知数的相反数
3.使学生能根据相反数的意思进行化简
【学习过程】
【情景创设】
回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点a,点b即是小明到达的位置。
观察a,b两点位置及共到原点的距离,你有什么发现吗?
观察下列各对数,你有什么发现?
‐5与5,‐6.1与6.1,‐34 与+34
相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)
规定0的相反数是0
想一想:你能举出互为相反数的例子吗?
【例题精讲】
例1
例2
试一试: 化简―[―(+3.2)]
想一想:
请同学们仔细观察这五个等式,它们的符号变化有什么规律?
把一个数的多重符号化成单一符号时,若该数前面有奇数个“―”号,则化简的结果是负;若该数前面有偶数个“―”号,则化简的结果是正.
练一练:填空
(1)-2的相反数是 ,
3.75与 互为相反数,
相反数是其本身的数是 ;
(2)-(+7)= ,
-(-7)= ,
-[+(-7)]= ,
-[-(-7)]= ;
(3)判断下列语句,正确的是 .
① ―5 是相反数;
② ―5 与 +3 互为相反数;
③ ―5 是 5 的相反数;
④ ―5 和 5 互为相反数;
⑤ 0 的相反数还是 0 .
选择:
(1)下列说法正确的是 ( )
a.正数的绝对值是负数;
b.符号不同的两个数互为相反数;
c.π的相反数是 ―3.14;
d.任何一个有理数都有相反数.
(2)一个数的相反数是非正数,那么这
个数一定是 ( )
a.正数 b.负数 c.零或正数 d.零
画一画:
在数轴上画出表示下列各数以及它们的相反数的点:
动脑筋:
如果数轴上两点 a、b 所表示的数互为相反数,点 a 在原点左侧,且 a、b 两点距离为 8 ,你知道点 b 代表什么数吗?
【课后作业】
1.判断题
(1) 0没有相反数。 ( )
(2)任何一个有理数的相反数都与原来的符号相反。 ( )
(3)如果一个有理数的相反数是正数,则这个数是负数. ( )
(4)只有0的相反数是它本身 ( )
(5) 互为相反数的两个数绝对值相等
2.填空题
(1) -(-2.8)= _________; -(+7)= _________;
(2) -3.4的相反数是 ________.
(3) -2.6是________的相反数.
(4)│-3.4│=________;│5.7│=________;
-│2.65│=_______;-│-12.56│=_______
(5)绝对值等于5的数是_________
(6)相反数等于本身的数是__________
3.化简:
(1) -(-1966)=______ (2) +│-1978│=______(3)+(-1983)=______
(4) -(+1997)=_______ (5) +│+│=______
4、选择题:
(1)在-3、+(-3)、-(-4)、-(+2)中,负数的个数有( )
a、1个 b、2个 c、3个
(2)在+(-2)与-2、-(+1)与+1、-(-4)与+(-4)、
-(+5)与+(-5)、-(-6)与+(+6)、+(+7)与+(-7)
这几对数中,互为相反数的有( )
a、6对 b、5对 c、4对 d、3对
5、在数轴上标出3、-2.5、2、0、 以及它们的相反数。
6、请在数轴上画出表示3、-2、-3.5及它们相反数的点,并分别用a、b、c、d、e、f来表示
(1)把这6个数按从小到大的顺序用<连接起来
(2)点c与原点之间的距离是多少?点a与点c之间的距离是多少?
相反数 篇9
学习目标:1、掌握相反数的概念,与绝对值的关系;互为相反数的几何意义。2、发展学生的符号感,培养学生的数形结合意识。
学习重点、难点:1、互为相反数的几何意义;2、渗透的数学方法与数学思想:数形结合、普遍联系的思想。
学习过程
一、课前预习
复习提问:什么是一个数的绝对值,怎么求?
(1)-3的绝对值为 =
= =
(2) 的绝对值为5, 的绝对值为0
若 =3 则a= , 若 =-10 则a=
(3)总结:一个数的绝对值可用若 表示, ≥0
一个数的绝对值表示这个数在数轴上表示的点到原点的距离。
二、课堂学习
+5、-5之间有什么关系?
我们把这样的两个数叫互为相反数
▲符号不同,绝对值相同的两个数叫互为相反数,其中一个数是另一个数的相反数。
例1:求3、-4.5、的相反数
小结:求一个数的相反数只要在这个数前面加上“-”
例:-4.5的相反数为-(-4.5)=+4.5
练:说出-(+3) -(-0.5)的含义
例2:化简:
问题:我们了解相反数的意义,及相反数的求法,你对相反数有何自己的看法或解释?
几何解释:从数轴上看,互为相反数在原点的两侧,到原点的距离相等。
练习:23页练一练
课堂练习:
(1)化简:
(2)一个数在数轴上对应的点向右移动5个单位长度后,得到它的相反数的对应点,则这个数
是
(3)a的相反数为 , 一定是负数吗?举例说明.
(4)在数轴上标出 , 的点,并用“<”或“>”填充:
(1) 0 , 0 , ,
(2) , ,
(3) ,
三、课堂检测
(一)、选择题:
1、的相反数是 ( )
a b 2 c -2 d
2、下列各对数中互为相反数的是 ( )
a -2与 b 与2 c -2.5 与 d 与
3、有理数中负数的个数是 ( )
a 1个 b 2个 c 3个 d 4个
4、一个数的相反数小于原数,这个数是 ( )
a 正数 b 负数 c 0 d 整数
(二)、填充:
1、一个数的相反数是它本身,这个数是 。
2、如果的相反数为 -7则=
3、化简:(1)= (2)
(3) = (4)=
4、若a、b表示互为相反数,a在b的右侧,并且这两点间的距离为2.4,则这两点所表示的数分别为
(三)、解答题:
1、写出下列各数的相反数:0, 58,-4, 3.14,
2、-(-7)是_____________的相反数,-(+4)是_____________的相反数.
四、作业布置
1、到原点的距离是5个单位长度的数是 ,它们的关系是 。
2、化简: , ,
3、比较大小: -(-4.4)
4、若>0 则= 若<0 则=
5、若的相反数是6.5 则=
6、把下列各数填入相应的集合里
整数集合:{ … } 正数集合:{ … }
负分数集合:{ …}
7、在数轴上分别用点a、b、c表示。并用点d、e、f表示它们的相反数,并把它们(包括它们的相反数)用“<”连接。
8、如果的相反数是 ,求的值。
★ 9、已知:a>0,b<0 ,且<。请结合数轴用“<”连接
相反数 篇10
教学目的:1. 知识与技能: 加深对绝对值的概念的理解,能借助数轴理解相反数的概念,会求一个数的相反数。2.过程与方法:经历相反数的概念发生过程,感受数学知识间的普遍联系3.情感、态度与价值观: 利用数轴帮助理解相反数的概念。辩证唯物主义观点中的矛盾论与相对论。教学重点: 绝对值的概念的理解, 求一个数的相反数,教学难点:加深对绝对值的概念的理解,理解相反数的两个概念,教学过程一、课前预习 在数轴上分别找到下列每一对数所表示的点;并指出它们与原点的距离的关系,再求它们的绝对值,你会发现一些什么共同点?将你的结论与同伴交流
发现:每一对数,①它们的绝对值相等②它们到原点的距离相等,并且分别在原点的两侧。③它们只有符号不同。 你还能举出有这样特征的几对数吗?二、自主探索 像 这样符号不同,绝对值相等的两个数,叫做互为相反数(opposite number). 规定,0的相反数还是0 例1、求3,-4.5,0的相反数。解: 例2、 与____是互为相反数,____是4.6的相反数,___的相反数是它本身 表示一个数的相反数,只要在这个数的前面添一个“-”号。 如5的相反数是-5;而-5的相反数是-(-5)=5, 相反数的相反数是本身。例3、化简下列符号:
例4、(1)+2.3的相反数是____,|+2.3|=____ (2)-10.5的相反数是____,|-10.5|=____ (3)0的相反数是____,|0|=___ 例5、有理数a,b在数轴上的位置如图所示,试比较a,b,-a,-b的大小,并用“<”把它们连接起来。 解: 例6、(1)|x|=3,则x= 若|y|=0,则= (2)若|x-2|=0,则x= (3) 若|x-2|+|y-3|=0,求有理数x,y的值 解:(3) 三、学习小结 这节课你学会了什么?四、随堂练习a类1、相反数等于4的数有___个,它是___。相反数等于-2.6的数有___个,它是___。相反数等于它本身的数有___个,它是___2.绝对值等于0的数有___个,它是___绝对值等于9的数有___个,它是___绝对值等于它本身的数有___个,它是___2、一个数的相反数是 -3 ,则这个数是 3、下列说法错误的是( )a、-7与7互为相反数 b、-8是-(-8)的相反数c、-(+3)与+(-3)是互为相反数 d、-(-3)与+(-3)是互为相反数4、化简符号:(1)+(-5)= -(-1)= (2) (3) -(-2.3)= -|-2.3|=_______(4)-{-[+(-8)]}=______ 5. 绝对值小于4的整数有 个,它们是 . 绝对值不大于4的整数有 个,它们是 b类6、在数轴上,如果点a、点b分别表示互为相反数的两个数,且a、b两点相距8个单位长度,问点a、点b分别表示什么数? 7.若|a-2|=-(a-2),试比较a与2的大小c类8、由小到大排列的一组有理数x1,x2,x3,x4,,其中每个数都小于-1,请用“<”将下列各数按大小顺序连接起来:1,x1,-x2,x3,-x4,
板书设计
教后感
相反数 篇11
相反数
一、学习目标
1了解相反数的概念。
2给一个数,能求出它的相反数。
3根据a的相反数是-a,能把多重符号化成单一符号。
二、教学过程
师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。
生:人人动用手画数轴,独立思考后,在小组内进行交流。
师:深入了解各小组的交流情况,讨论结束后,提问1、2人,帮助全班同学理清思考问题的思路。
师:请同学们阅读课本,知道什么叫相反数,给出一个数能求出它的相反数。
生:阅读课本第59页,并完成练习一第(1)~(4)题。
师:提问检查学生的学习情况,强调“0的相反数是0”也是相反数定义的一部分。
师:请同学们先想一想,a可以表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习情况。
师:认真了解各小组的学习情况,特别是对简化符号的题和学习困难的学生,要重点对待。
生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。
师:请同学们先小结一下本节课的学习内容。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除A组第2题外都可以直接说出结果)
生:小结。完成习题1.3 中的有关练习。
练习
1在下列各式中分别填上适当的符号,使等号左右两端的数相等;
-(+19)=____________19;
____________10.2=+(+10.2);
____________(+12)=-12;
____________(-25)=+25。
2把下面的多重符号化成单一符号:
-[-(-0.3)]=____________;
-[-(+4)]=____________;
+[+(+5)]=____________;
-[+(-50)]=____________。
3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。
4下面的说法对不对?请举列说明。
(1)一个有理数的相反数的相反数就是这个有理数本身。
(2)一个有理数的相反数一定比原来的有理数小。
(3)-a是一个负数。
作业
在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。
相反数
一、学习目标
1了解相反数的概念。
2给一个数,能求出它的相反数。
3根据a的相反数是-a,能把多重符号化成单一符号。
二、教学过程
师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。
生:人人动用手画数轴,独立思考后,在小组内进行交流。
师:深入了解各小组的交流情况,讨论结束后,提问1、2人,帮助全班同学理清思考问题的思路。
师:请同学们阅读课本,知道什么叫相反数,给出一个数能求出它的相反数。
生:阅读课本第59页,并完成练习一第(1)~(4)题。
师:提问检查学生的学习情况,强调“0的相反数是0”也是相反数定义的一部分。
师:请同学们先想一想,a可以表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习情况。
师:认真了解各小组的学习情况,特别是对简化符号的题和学习困难的学生,要重点对待。
生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。
师:请同学们先小结一下本节课的学习内容。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除A组第2题外都可以直接说出结果)
生:小结。完成习题1.3 中的有关练习。
练习
1在下列各式中分别填上适当的符号,使等号左右两端的数相等;
-(+19)=____________19;
____________10.2=+(+10.2);
____________(+12)=-12;
____________(-25)=+25。
2把下面的多重符号化成单一符号:
-[-(-0.3)]=____________;
-[-(+4)]=____________;
+[+(+5)]=____________;
-[+(-50)]=____________。
3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。
4下面的说法对不对?请举列说明。
(1)一个有理数的相反数的相反数就是这个有理数本身。
(2)一个有理数的相反数一定比原来的有理数小。
(3)-a是一个负数。
作业
在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。
相反数 篇12
教学目标1、知识与技能:初步理解绝对值的概念,理解绝对值的几何意义,会通过画数轴的方法求一个数的绝对值。2、过程与方法:经历将实际问题数学化的过程,感受数学与生活的关系,3、情感、态度与价值观:经历将实际问题数学化的过程,感受数学与生活的联系。进一步渗透数形结合的思想,感知数学知识具有普遍的联系性。教学重点:绝对值的概念. 通过画数轴的方法求一个数的绝对值.教学难点:理解绝对值的几何意义.教学过程:1.课间预习 小明的家在学校西边3km处,小丽的家在学校东边2km处,如下图,我们可以把学校门前的大街想象为数轴,把学校 定为原点, 把小明、小丽两家看成数轴上的两点a、b.
-2
-1
2
1
0
a
-3
b `思考:1、a、b两点离原点的距离各是多少? 2、a、b两点离原点的距离与它们表示的数是正数还是负数有没有关系? 3、在数轴上分别描出下列数所对应的点,并指出它们到原点的距离:
2.自主探究 我们把数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。(absolute value) 例如上图, 表示-3的点a到原点的距离是3,所以-3的绝对值是3, 问: 表示-2点到原点的距离是 ,所以-2的绝对值是 .表示2点到原点的距离是 ,所以2的绝对值是 .表示0到原点的距离是 ,所以0的绝对值是 .重点也也是难点注意:绝对值为正数的数有两个。 例如:绝对值为5的数是+5和-5你做对了吗+2.3和-2.3的绝对值都为2.3提问;绝对值为0的数是 『小试牛刀』1、数轴上与原点的距离为3.5的点有 个,它们分别表示有理数 和 。2、绝对值等于6的数是 。
0
1
2
3
4
5
-1
-2
-3
-4
-5
●
●
●
●
●
a
b
c
d
e例1、说出数轴上a、b、c、d、e各点所表示的数的绝对值 。 例2、求4、0与-3.5的绝对值.分析:解此题应画数轴,在数轴上画出表示4、0、-3.5的点,求出表示4、0、-3.5的点到原点的距离,即是它们的绝对值。 绝对值的符号: 4的绝对值记为|4|, 0的绝对值记为|0|, -3.5的绝对值记为|-3.5|,例2的结论就可以记为:|4|=4,|0|=0,|-3.5|=3.5 例3、比较下列各组数的绝对值的大小。 (1)2与-3 (2)-3与-6 例4、一小球在数轴上来回滚动,如果向右滚动1个单位长度,我们就用+1表示。现小球从表示-2的点处开始滚动,滚动过程记录如下:-1.5,-3,+7,-3,+4.5。问小球最终停在何处?小球共滚动了多少个单位长度? 解答: 『供你尝试』a类1、数轴上 ,叫做这个数的绝对值。2、在数轴上,表示-5的点到原点的距离是 ,则-5的绝对值是 。3、在数轴上,到表示-1的的距离是3的点所表示的数是 4、一个数的绝对值为9,那么这个数是 。5、下列说法:①7的绝对值是7②-7的绝对值是7③绝对值等于7的数是7或-7④绝对值最小的有理数是0。其中正确说法有( )a、1个 b、2个 c、3个 d、4个6、下列说法中正确的是( )a、绝对值小于2的数有三个。 b、绝对值是2的数有二个。c、绝对值是-2的数有一个。d、任何数的绝对值都是正数。b类7、(1)绝对值等于4的数有____个,它们是____ (2)绝对值小于4的整数有_____个,它们是_____ (3)绝对值不大于4的整数有 个,它们是 。(4)绝对值不大于4的负整数有_____个,它们是______ (5)绝对值大于1且小于5的整数有___个,它们是____ c类8、正式乒乓球比赛对所使用乒乓球的重量是有严格规定的。检查5只乒乓球的重量,超过规定重量的毫克数记作正数,不足规定重量的毫克数记作负数,检查结果如下: 请指出哪只乒乓球的质量好一些?你能
第1只
第2只
第3只
第4只
第5只
+25
-15
+40
-5
-20用绝对值的知识进行说明吗?
板书设计
教后感