相似三角形的性质(通用15篇)
相似三角形的性质 篇1
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
相似三角形的性质 篇2
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点 :是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
相似三角形的性质 篇3
教学建议
知识结构
重点、难点分析
及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究,以完成对相似三角形的定义、判定和性质的全面研究.还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
教法建议
1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等
2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答
3.在知识的巩固中要注意与全等三角形的对比
(第1课时)
一、教学目标
1.使学生进一步理解相似比的概念,掌握定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点 :是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
∽ ,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
相似三角形的性质 篇4
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点 :是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
相似三角形的性质 篇5
教学建议
知识结构
重点、难点分析
及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究,以完成对相似三角形的定义、判定和性质的全面研究.还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
教法建议
1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等
2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答
3.在知识的巩固中要注意与全等三角形的对比
(第1课时)
一、教学目标
1.使学生进一步理解相似比的概念,掌握定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点 :是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
∽ ,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
相似三角形的性质 篇6
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
相似三角形的性质 篇7
教学建议
知识结构
重点、难点分析
及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究,以完成对相似三角形的定义、判定和性质的全面研究.还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
教法建议
1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等
2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答
3.在知识的巩固中要注意与全等三角形的对比
(第1课时)
一、教学目标
1.使学生进一步理解相似比的概念,掌握定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
∽ ,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
相似三角形的性质 篇8
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点 :是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
相似三角形的性质 篇9
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点 :是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
相似三角形的性质 篇10
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点 :是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
相似三角形的性质 篇11
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点 :是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
相似三角形的性质 篇12
教学建议
知识结构
重点、难点分析
及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究,以完成对相似三角形的定义、判定和性质的全面研究.还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
教法建议
1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等
2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答
3.在知识的巩固中要注意与全等三角形的对比
(第1课时)
一、教学目标
1.使学生进一步理解相似比的概念,掌握定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
∽ ,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
相似三角形的性质 篇13
教学建议
知识结构
重点、难点分析
及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究,以完成对相似三角形的定义、判定和性质的全面研究.还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
教法建议
1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等
2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答
3.在知识的巩固中要注意与全等三角形的对比
(第1课时)
一、教学目标
1.使学生进一步理解相似比的概念,掌握定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点 :是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
∽ ,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
相似三角形的性质 篇14
教学建议
知识结构
重点、难点分析
相似三角形的性质及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义、判定和性质的全面研究.相似三角形的性质还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
教法建议
1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等
2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答
3.在知识的巩固中要注意与全等三角形的对比
(第1课时)
一、教学目标
1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点 :是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
∽ ,
,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)
∽ ,
BM=MC,
∽ ,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
相似三角形的性质 篇15
(第2课时)
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点 :是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽ ,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽ ,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为 .
∽ ∽ 且 , .
.
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
上一篇:确定一次函数的表达式
下一篇:三角形相似的判定