二次根式的化简(通用12篇)
二次根式的化简 篇1
教学建议
知识结构
.
重难点分析
本节的重点是 的化简.本章自始至终围绕着与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式
.
这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1) 、 、 各等于什么?
2) 、 、 各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质 进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学过程
一、导入 新课
我们知道,式子 ( )表示非负数 的算术平方根.
问:式子 的意义是什么?被开方数中的 表示的是什么数?
答:式子 表示非负数 的算术平方根,即 ,且 ,从而 可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8)
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母 表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
答:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8) .
1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.
2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.
3.用字母 表示(1),(2),(3),(8)各题中被开方数的幂的底数,有
( ),
用字母 表示(4),(5),(6),(7)各题中被开方数的幂的底数,有
( ).
一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.
问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)
答:
请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?
答:
填空:
1.当 _________时, ;
2.当 时, ,当 时, ;
3.若 ,则 ________;
4.当 时, .
答:
1.当 时, ;
2.当 时, ,
当 时, ;
3.若 ,则 ;
4.当 时, .
例1 化简 ( ).
分析:可以利用积的算术平方根的性质及二次根式的性质化简.
解 ,因为 ,所以 ,所以
.
指出:在化简和运算过程中,把 先写成 ,再根据已知条件中 的取值范围,确定其结果.
例2 化简 ( ).
分析:根据二次根式的性质,当 时, .
解 .
例3 化简:(1) ( ); (2) ( ).
分析:根据二次根式的性质,当 时, .
解 (1) .
(2) .
注意:(1)题中的被开方数 ,因为 ,所以 .
(2)题中的被开方数 ,因为 ,所以 .
这里 的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.
例4 化简 .
分析:根据二次根式的性质,有
.
所以要比较 与3及1与 的大小以确定 及 的符号,然后再进行化简.
解 因为 , ,所以
, .
所以
.
三、课堂练习
1.求下列各式的值:
(1) ; (2) .
2.化简:
(1) ; (2) ;
(3) ( ); (4) ( ).
3.化简:
(1) ; (2) ;
(3) ; (4) ;
(5) ; (6) ( ).
答案:
1.(1)0.1; (2) .
2.(1) ; (2) ; (3) ; (4) .
3.(1)4; (2)1.5; (3)0.09; (4)-1; (5)4; (6)-1.
四、小结
1.二次根式 的意义是 ,所以 ,因此 ,其中 可以取任意实数.
2.化简形如 的二次根式,首先可把 写成 的形式,再根据已知条件中字母 的取值范围,确定其结果.
3.在化简中,注意运用题设中的隐含条件,如二次根式 有意义的条件是被开方 ,这是隐含条件.
五、作业
1.化简:
(1) ; (2) ;
(3) ( ); (4) ( );
(5) ; (6) ( , );
(7) ( ).
2.化简:
(1) ;
(2) ( );
(3) ( , ).
答案:
1.(1)-30; (2) ; (3) ;
(4) ; (5) ; (6) ; (7) .
2.(1)2; (2)0; (3) .
二次根式的化简 篇2
教学建议
知识结构
.
重难点分析
本节的重点是 的化简.本章自始至终围绕着与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式
.
这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1) 、 、 各等于什么?
2) 、 、 各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质 进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学过程
一、导入 新课
我们知道,式子 ( )表示非负数 的算术平方根.
问:式子 的意义是什么?被开方数中的 表示的是什么数?
答:式子 表示非负数 的算术平方根,即 ,且 ,从而 可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8)
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母 表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
答:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8) .
1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.
2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.
3.用字母 表示(1),(2),(3),(8)各题中被开方数的幂的底数,有
( ),
用字母 表示(4),(5),(6),(7)各题中被开方数的幂的底数,有
( ).
一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.
问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)
答:
请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?
答:
填空:
1.当 _________时, ;
2.当 时, ,当 时, ;
3.若 ,则 ________;
4.当 时, .
答:
1.当 时, ;
2.当 时, ,
当 时, ;
3.若 ,则 ;
4.当 时, .
例1 化简 ( ).
分析:可以利用积的算术平方根的性质及二次根式的性质化简.
解 ,因为 ,所以 ,所以
.
指出:在化简和运算过程中,把 先写成 ,再根据已知条件中 的取值范围,确定其结果.
例2 化简 ( ).
分析:根据二次根式的性质,当 时, .
解 .
例3 化简:(1) ( ); (2) ( ).
分析:根据二次根式的性质,当 时, .
解 (1) .
(2) .
注意:(1)题中的被开方数 ,因为 ,所以 .
(2)题中的被开方数 ,因为 ,所以 .
这里 的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.
例4 化简 .
分析:根据二次根式的性质,有
.
所以要比较 与3及1与 的大小以确定 及 的符号,然后再进行化简.
解 因为 , ,所以
, .
所以
.
三、课堂练习
1.求下列各式的值:
(1) ; (2) .
2.化简:
(1) ; (2) ;
(3) ( ); (4) ( ).
3.化简:
(1) ; (2) ;
(3) ; (4) ;
(5) ; (6) ( ).
答案:
1.(1)0.1; (2) .
2.(1) ; (2) ; (3) ; (4) .
3.(1)4; (2)1.5; (3)0.09; (4)-1; (5)4; (6)-1.
四、小结
1.二次根式 的意义是 ,所以 ,因此 ,其中 可以取任意实数.
2.化简形如 的二次根式,首先可把 写成 的形式,再根据已知条件中字母 的取值范围,确定其结果.
3.在化简中,注意运用题设中的隐含条件,如二次根式 有意义的条件是被开方 ,这是隐含条件.
五、作业
1.化简:
(1) ; (2) ;
(3) ( ); (4) ( );
(5) ; (6) ( , );
(7) ( ).
2.化简:
(1) ;
(2) ( );
(3) ( , ).
答案:
1.(1)-30; (2) ; (3) ;
(4) ; (5) ; (6) ; (7) .
2.(1)2; (2)0; (3) .
二次根式的化简 篇3
教学建议
知识结构
.
重难点分析
本节的重点是 的化简.本章自始至终围绕着与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式
.
这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1) 、 、 各等于什么?
2) 、 、 各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质 进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学过程
一、导入 新课
我们知道,式子 ( )表示非负数 的算术平方根.
问:式子 的意义是什么?被开方数中的 表示的是什么数?
答:式子 表示非负数 的算术平方根,即 ,且 ,从而 可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8)
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母 表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
答:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8) .
1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.
2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.
3.用字母 表示(1),(2),(3),(8)各题中被开方数的幂的底数,有
( ),
用字母 表示(4),(5),(6),(7)各题中被开方数的幂的底数,有
( ).
一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.
问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)
答:
请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?
答:
填空:
1.当 _________时, ;
2.当 时, ,当 时, ;
3.若 ,则 ________;
4.当 时, .
答:
1.当 时, ;
2.当 时, ,
当 时, ;
3.若 ,则 ;
4.当 时, .
例1 化简 ( ).
分析:可以利用积的算术平方根的性质及二次根式的性质化简.
解 ,因为 ,所以 ,所以
.
指出:在化简和运算过程中,把 先写成 ,再根据已知条件中 的取值范围,确定其结果.
例2 化简 ( ).
分析:根据二次根式的性质,当 时, .
解 .
例3 化简:(1) ( ); (2) ( ).
分析:根据二次根式的性质,当 时, .
解 (1) .
(2) .
注意:(1)题中的被开方数 ,因为 ,所以 .
(2)题中的被开方数 ,因为 ,所以 .
这里 的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.
例4 化简 .
分析:根据二次根式的性质,有
.
所以要比较 与3及1与 的大小以确定 及 的符号,然后再进行化简.
解 因为 , ,所以
, .
所以
.
三、课堂练习
1.求下列各式的值:
(1) ; (2) .
2.化简:
(1) ; (2) ;
(3) ( ); (4) ( ).
3.化简:
(1) ; (2) ;
(3) ; (4) ;
(5) ; (6) ( ).
答案:
1.(1)0.1; (2) .
2.(1) ; (2) ; (3) ; (4) .
3.(1)4; (2)1.5; (3)0.09; (4)-1; (5)4; (6)-1.
四、小结
1.二次根式 的意义是 ,所以 ,因此 ,其中 可以取任意实数.
2.化简形如 的二次根式,首先可把 写成 的形式,再根据已知条件中字母 的取值范围,确定其结果.
3.在化简中,注意运用题设中的隐含条件,如二次根式 有意义的条件是被开方 ,这是隐含条件.
五、作业
1.化简:
(1) ; (2) ;
(3) ( ); (4) ( );
(5) ; (6) ( , );
(7) ( ).
2.化简:
(1) ;
(2) ( );
(3) ( , ).
答案:
1.(1)-30; (2) ; (3) ;
(4) ; (5) ; (6) ; (7) .
2.(1)2; (2)0; (3) .
二次根式的化简 篇4
教学建议
知识结构
.
重难点分析
本节的重点是 的化简.本章自始至终围绕着与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式
.
这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1) 、 、 各等于什么?
2) 、 、 各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质 进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学过程
一、导入 新课
我们知道,式子 ( )表示非负数 的算术平方根.
问:式子 的意义是什么?被开方数中的 表示的是什么数?
答:式子 表示非负数 的算术平方根,即 ,且 ,从而 可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8)
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母 表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
答:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8) .
1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.
2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.
3.用字母 表示(1),(2),(3),(8)各题中被开方数的幂的底数,有
( ),
用字母 表示(4),(5),(6),(7)各题中被开方数的幂的底数,有
( ).
一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.
问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)
答:
请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?
答:
填空:
1.当 _________时, ;
2.当 时, ,当 时, ;
3.若 ,则 ________;
4.当 时, .
答:
1.当 时, ;
2.当 时, ,
当 时, ;
3.若 ,则 ;
4.当 时, .
例1 化简 ( ).
分析:可以利用积的算术平方根的性质及二次根式的性质化简.
解 ,因为 ,所以 ,所以
.
指出:在化简和运算过程中,把 先写成 ,再根据已知条件中 的取值范围,确定其结果.
例2 化简 ( ).
分析:根据二次根式的性质,当 时, .
解 .
例3 化简:(1) ( ); (2) ( ).
分析:根据二次根式的性质,当 时, .
解 (1) .
(2) .
注意:(1)题中的被开方数 ,因为 ,所以 .
(2)题中的被开方数 ,因为 ,所以 .
这里 的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.
例4 化简 .
分析:根据二次根式的性质,有
.
所以要比较 与3及1与 的大小以确定 及 的符号,然后再进行化简.
解 因为 , ,所以
, .
所以
.
三、课堂练习
1.求下列各式的值:
(1) ; (2) .
2.化简:
(1) ; (2) ;
(3) ( ); (4) ( ).
3.化简:
(1) ; (2) ;
(3) ; (4) ;
(5) ; (6) ( ).
答案:
1.(1)0.1; (2) .
2.(1) ; (2) ; (3) ; (4) .
3.(1)4; (2)1.5; (3)0.09; (4)-1; (5)4; (6)-1.
四、小结
1.二次根式 的意义是 ,所以 ,因此 ,其中 可以取任意实数.
2.化简形如 的二次根式,首先可把 写成 的形式,再根据已知条件中字母 的取值范围,确定其结果.
3.在化简中,注意运用题设中的隐含条件,如二次根式 有意义的条件是被开方 ,这是隐含条件.
五、作业
1.化简:
(1) ; (2) ;
(3) ( ); (4) ( );
(5) ; (6) ( , );
(7) ( ).
2.化简:
(1) ;
(2) ( );
(3) ( , ).
答案:
1.(1)-30; (2) ; (3) ;
(4) ; (5) ; (6) ; (7) .
2.(1)2; (2)0; (3) .
二次根式的化简 篇5
教学建议
知识结构
.
重难点分析
本节的重点是 的化简.本章自始至终围绕着与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式
.
这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1) 、 、 各等于什么?
2) 、 、 各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质 进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学过程
一、导入 新课
我们知道,式子 ( )表示非负数 的算术平方根.
问:式子 的意义是什么?被开方数中的 表示的是什么数?
答:式子 表示非负数 的算术平方根,即 ,且 ,从而 可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8)
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母 表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
答:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8) .
1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.
2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.
3.用字母 表示(1),(2),(3),(8)各题中被开方数的幂的底数,有
( ),
用字母 表示(4),(5),(6),(7)各题中被开方数的幂的底数,有
( ).
一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.
问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)
答:
请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?
答:
填空:
1.当 _________时, ;
2.当 时, ,当 时, ;
3.若 ,则 ________;
4.当 时, .
答:
1.当 时, ;
2.当 时, ,
当 时, ;
3.若 ,则 ;
4.当 时, .
例1 化简 ( ).
分析:可以利用积的算术平方根的性质及二次根式的性质化简.
解 ,因为 ,所以 ,所以
.
指出:在化简和运算过程中,把 先写成 ,再根据已知条件中 的取值范围,确定其结果.
例2 化简 ( ).
分析:根据二次根式的性质,当 时, .
解 .
例3 化简:(1) ( ); (2) ( ).
分析:根据二次根式的性质,当 时, .
解 (1) .
(2) .
注意:(1)题中的被开方数 ,因为 ,所以 .
(2)题中的被开方数 ,因为 ,所以 .
这里 的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.
例4 化简 .
分析:根据二次根式的性质,有
.
所以要比较 与3及1与 的大小以确定 及 的符号,然后再进行化简.
解 因为 , ,所以
, .
所以
.
三、课堂练习
1.求下列各式的值:
(1) ; (2) .
2.化简:
(1) ; (2) ;
(3) ( ); (4) ( ).
3.化简:
(1) ; (2) ;
(3) ; (4) ;
(5) ; (6) ( ).
答案:
1.(1)0.1; (2) .
2.(1) ; (2) ; (3) ; (4) .
3.(1)4; (2)1.5; (3)0.09; (4)-1; (5)4; (6)-1.
四、小结
1.二次根式 的意义是 ,所以 ,因此 ,其中 可以取任意实数.
2.化简形如 的二次根式,首先可把 写成 的形式,再根据已知条件中字母 的取值范围,确定其结果.
3.在化简中,注意运用题设中的隐含条件,如二次根式 有意义的条件是被开方 ,这是隐含条件.
五、作业
1.化简:
(1) ; (2) ;
(3) ( ); (4) ( );
(5) ; (6) ( , );
(7) ( ).
2.化简:
(1) ;
(2) ( );
(3) ( , ).
答案:
1.(1)-30; (2) ; (3) ;
(4) ; (5) ; (6) ; (7) .
2.(1)2; (2)0; (3) .
二次根式的化简 篇6
教学建议
知识结构
重难点分析
本节的重点是 的化简.本章自始至终围绕着二次根式的化简与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式
.
这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1) 、 、 各等于什么?
2) 、 、 各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质 进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学过程
一、导入 新课
我们知道,式子 ( )表示非负数 的算术平方根.
问:式子 的意义是什么?被开方数中的 表示的是什么数?
答:式子 表示非负数 的算术平方根,即 ,且 ,从而 可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8)
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母 表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
答:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6)
(7) ; (8) .
1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.
2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.
3.用字母 表示(1),(2),(3),(8)各题中被开方数的幂的底数,有
( ),
用字母 表示(4),(5),(6),(7)各题中被开方数的幂的底数,有
( ).
一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.
问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)
答:
请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?
答:
填空:
1.当 _________时, ;
2.当 时, ,当 时, ;
3.若 ,则 ________;
4.当 时, .
答:
1.当 时, ;
2.当 时, ,
当 时, ;
3.若 ,则 ;
4.当 时, .
例1 化简 ( ).
分析:可以利用积的算术平方根的性质及二次根式的性质化简.
解 ,因为 ,所以 ,所以
.
指出:在化简和运算过程中,把 先写成 ,再根据已知条件中 的取值范围,确定其结果.
例2 化简 ( ).
分析:根据二次根式的性质,当 时, .
解 .
例3 化简:(1) ( ); (2) ( ).
分析:根据二次根式的性质,当 时, .
解 (1) .
(2) .
注意:(1)题中的被开方数 ,因为 ,所以 .
(2)题中的被开方数 ,因为 ,所以 .
这里 的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.
例4 化简 .
分析:根据二次根式的性质,有
.
所以要比较 与3及1与 的大小以确定 及 的符号,然后再进行化简.
解 因为 , ,所以
, .
所以
.
三、课堂练习
1.求下列各式的值:
(1) ; (2) .
2.化简:
(1) ; (2) ;
(3) ( ); (4) ( ).
3.化简:
(1) ; (2) ;
(3) ; (4) ;
(5) ; (6) ( ).
答案:
1.(1)0.1; (2) .
2.(1) ; (2) ; (3) ; (4) .
3.(1)4; (2)1.5; (3)0.09; (4)-1; (5)4; (6)-1.
四、小结
1.二次根式 的意义是 ,所以 ,因此 ,其中 可以取任意实数.
2.化简形如 的二次根式,首先可把 写成 的形式,再根据已知条件中字母 的取值范围,确定其结果.
3.在化简中,注意运用题设中的隐含条件,如二次根式 有意义的条件是被开方 ,这是隐含条件.
五、作业
1.化简:
(1) ; (2) ;
(3) ( ); (4) ( );
(5) ; (6) ( , );
(7) ( ).
2.化简:
(1) ;
(2) ( );
(3) ( , ).
答案:
1.(1)-30; (2) ; (3) ;
(4) ; (5) ; (6) ; (7) .
2.(1)2; (2)0; (3) .
二次根式的化简 篇7
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学步骤
(一)教学过程
【复习引入】
1.求值 、 、 、 …
求值 、 、 、 …
结论:当 时, ;
当 时, .
2.求值 、 …
结论:当 时,式子有意义, ,对于 , 不能为负数.
3.求值 、 …
结论:当 时, .
问:若根号内这个式子中的底数 ,根式还有意义吗?其值等于什么?
例如, ,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中 与 互为相反数.
【讲解新课】
提出问题: 等于什么?引导学生讨论、猜测、联想,得到结论:
教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若 时, 能否等于 ,以增强学生的辨别能力,加强学生对公式的理解和记忆.
例1 化简:
(1) ; (2) .
解:(略).
注: 可看作 ,把 先写为 ;
可看作 ,把 先写为 .
例2 化简: .
分析:底数 是非负数还是负数将直接影响结果,这时要注意条件,由条件 ,可得 .
∴ .
解:(略).
例3 化简下列各式:
(1) ( ); (2) ( );
(3) ( ); (4) ( ).
解:(1)∵
∴ .
∴
.
(2)∵
∴ ,即 .
∴
.
(3)∵
∴ ,即 .
∴
.
(4)∵ ,
∵ ,即 .
∴ .
注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式 计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.
在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.
(二)随堂练习
1.求值:
(1) ;(2) ;(3) ( );
(4) ;(5) .
解:(1) .
(2) .
(3) .
(4) .
(5) .
注: ,学生易与 相混淆.
2.化简:
(1) ;(2) ;(3) ;
(4) ( ); (5) ( ).
解:(1) .
(2) .
(3) .
(4) .
(5) .
(三)总结、扩展
对公式 ,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.
(四)布置作业
教材P213中1(2)、(3);2(1)、(2).
(五)板书设计
标 题
1.复习题 4.练习题
2.公式
3.例题
二次根式的化简 篇8
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学步骤
(一)教学过程
【复习引入】
1.求值 、 、 、 …
求值 、 、 、 …
结论:当 时, ;
当 时, .
2.求值 、 …
结论:当 时,式子有意义, ,对于 , 不能为负数.
3.求值 、 …
结论:当 时, .
问:若根号内这个式子中的底数 ,根式还有意义吗?其值等于什么?
例如, ,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中 与 互为相反数.
【讲解新课】
提出问题: 等于什么?引导学生讨论、猜测、联想,得到结论:
教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若 时, 能否等于 ,以增强学生的辨别能力,加强学生对公式的理解和记忆.
例1 化简:
(1) ; (2) .
解:(略).
注: 可看作 ,把 先写为 ;
可看作 ,把 先写为 .
例2 化简: .
分析:底数 是非负数还是负数将直接影响结果,这时要注意条件,由条件 ,可得 .
∴ .
解:(略).
例3 化简下列各式:
(1) ( ); (2) ( );
(3) ( ); (4) ( ).
解:(1)∵
∴ .
∴
.
(2)∵
∴ ,即 .
∴
.
(3)∵
∴ ,即 .
∴
.
(4)∵ ,
∵ ,即 .
∴ .
注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式 计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.
在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.
(二)随堂练习
1.求值:
(1) ;(2) ;(3) ( );
(4) ;(5) .
解:(1) .
(2) .
(3) .
(4) .
(5) .
注: ,学生易与 相混淆.
2.化简:
(1) ;(2) ;(3) ;
(4) ( ); (5) ( ).
解:(1) .
(2) .
(3) .
(4) .
(5) .
(三)总结、扩展
对公式 ,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.
(四)布置作业
教材P213中1(2)、(3);2(1)、(2).
(五)板书设计
标 题
1.复习题 4.练习题
2.公式
3.例题
二次根式的化简 篇9
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学步骤
(一)教学过程
【复习引入】
1.求值 、 、 、 …
求值 、 、 、 …
结论:当 时, ;
当 时, .
2.求值 、 …
结论:当 时,式子有意义, ,对于 , 不能为负数.
3.求值 、 …
结论:当 时, .
问:若根号内这个式子中的底数 ,根式还有意义吗?其值等于什么?
例如, ,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中 与 互为相反数.
【讲解新课】
提出问题: 等于什么?引导学生讨论、猜测、联想,得到结论:
教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若 时, 能否等于 ,以增强学生的辨别能力,加强学生对公式的理解和记忆.
例1 化简:
(1) ; (2) .
解:(略).
注: 可看作 ,把 先写为 ;
可看作 ,把 先写为 .
例2 化简: .
分析:底数 是非负数还是负数将直接影响结果,这时要注意条件,由条件 ,可得 .
∴ .
解:(略).
例3 化简下列各式:
(1) ( ); (2) ( );
(3) ( ); (4) ( ).
解:(1)∵
∴ .
∴
.
(2)∵
∴ ,即 .
∴
.
(3)∵
∴ ,即 .
∴
.
(4)∵ ,
∵ ,即 .
∴ .
注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式 计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.
在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.
(二)随堂练习
1.求值:
(1) ;(2) ;(3) ( );
(4) ;(5) .
解:(1) .
(2) .
(3) .
(4) .
(5) .
注: ,学生易与 相混淆.
2.化简:
(1) ;(2) ;(3) ;
(4) ( ); (5) ( ).
解:(1) .
(2) .
(3) .
(4) .
(5) .
(三)总结、扩展
对公式 ,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.
(四)布置作业
教材P213中1(2)、(3);2(1)、(2).
(五)板书设计
标 题
1.复习题 4.练习题
2.公式
3.例题
二次根式的化简 篇10
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学步骤
(一)教学过程
【复习引入】
1.求值 、 、 、 …
求值 、 、 、 …
结论:当 时, ;
当 时, .
2.求值 、 …
结论:当 时,式子有意义, ,对于 , 不能为负数.
3.求值 、 …
结论:当 时, .
问:若根号内这个式子中的底数 ,根式还有意义吗?其值等于什么?
例如, ,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中 与 互为相反数.
【讲解新课】
提出问题: 等于什么?引导学生讨论、猜测、联想,得到结论:
教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若 时, 能否等于 ,以增强学生的辨别能力,加强学生对公式的理解和记忆.
例1 化简:
(1) ; (2) .
解:(略).
注: 可看作 ,把 先写为 ;
可看作 ,把 先写为 .
例2 化简: .
分析:底数 是非负数还是负数将直接影响结果,这时要注意条件,由条件 ,可得 .
∴ .
解:(略).
例3 化简下列各式:
(1) ( ); (2) ( );
(3) ( ); (4) ( ).
解:(1)∵
∴ .
∴
.
(2)∵
∴ ,即 .
∴
.
(3)∵
∴ ,即 .
∴
.
(4)∵ ,
∵ ,即 .
∴ .
注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式 计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.
在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.
(二)随堂练习
1.求值:
(1) ;(2) ;(3) ( );
(4) ;(5) .
解:(1) .
(2) .
(3) .
(4) .
(5) .
注: ,学生易与 相混淆.
2.化简:
(1) ;(2) ;(3) ;
(4) ( ); (5) ( ).
解:(1) .
(2) .
(3) .
(4) .
(5) .
(三)总结、扩展
对公式 ,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.
(四)布置作业
教材P213中1(2)、(3);2(1)、(2).
(五)板书设计
标 题
1.复习题 4.练习题
2.公式
3.例题
二次根式的化简 篇11
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学步骤
(一)教学过程
【复习引入】
1.求值 、 、 、 …
求值 、 、 、 …
结论:当 时, ;
当 时, .
2.求值 、 …
结论:当 时,式子有意义, ,对于 , 不能为负数.
3.求值 、 …
结论:当 时, .
问:若根号内这个式子中的底数 ,根式还有意义吗?其值等于什么?
例如, ,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中 与 互为相反数.
【讲解新课】
提出问题: 等于什么?引导学生讨论、猜测、联想,得到结论:
教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若 时, 能否等于 ,以增强学生的辨别能力,加强学生对公式的理解和记忆.
例1 化简:
(1) ; (2) .
解:(略).
注: 可看作 ,把 先写为 ;
可看作 ,把 先写为 .
例2 化简: .
分析:底数 是非负数还是负数将直接影响结果,这时要注意条件,由条件 ,可得 .
∴ .
解:(略).
例3 化简下列各式:
(1) ( ); (2) ( );
(3) ( ); (4) ( ).
解:(1)∵
∴ .
∴
.
(2)∵
∴ ,即 .
∴
.
(3)∵
∴ ,即 .
∴
.
(4)∵ ,
∵ ,即 .
∴ .
注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式 计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.
在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.
(二)随堂练习
1.求值:
(1) ;(2) ;(3) ( );
(4) ;(5) .
解:(1) .
(2) .
(3) .
(4) .
(5) .
注: ,学生易与 相混淆.
2.化简:
(1) ;(2) ;(3) ;
(4) ( ); (5) ( ).
解:(1) .
(2) .
(3) .
(4) .
(5) .
(三)总结、扩展
对公式 ,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.
(四)布置作业
教材P213中1(2)、(3);2(1)、(2).
(五)板书设计
标 题
1.复习题 4.练习题
2.公式
3.例题
二次根式的化简 篇12
(第1课时)
一、教学目标
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
二、教学设计
对比、归纳、总结
三、重点和难点
1.重点:理解并掌握二次根式的性质
2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习对比,归纳整理,应用提高,以学生活动为主
七、教学步骤
(一)教学过程
【复习引入】
1.求值 、 、 、 …
求值 、 、 、 …
结论:当 时, ;
当 时, .
2.求值 、 …
结论:当 时,式子有意义, ,对于 , 不能为负数.
3.求值 、 …
结论:当 时, .
问:若根号内这个式子中的底数 ,根式还有意义吗?其值等于什么?
例如, ,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中 与 互为相反数.
【讲解新课】
提出问题: 等于什么?引导学生讨论、猜测、联想,得到结论:
教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若 时, 能否等于 ,以增强学生的辨别能力,加强学生对公式的理解和记忆.
例1 化简:
(1) ; (2) .
解:(略).
注: 可看作 ,把 先写为 ;
可看作 ,把 先写为 .
例2 化简: .
分析:底数 是非负数还是负数将直接影响结果,这时要注意条件,由条件 ,可得 .
∴ .
解:(略).
例3 化简下列各式:
(1) ( ); (2) ( );
(3) ( ); (4) ( ).
解:(1)∵
∴ .
∴
.
(2)∵
∴ ,即 .
∴
.
(3)∵
∴ ,即 .
∴
.
(4)∵ ,
∵ ,即 .
∴ .
注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式 计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.
在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.
(二)随堂练习
1.求值:
(1) ;(2) ;(3) ( );
(4) ;(5) .
解:(1) .
(2) .
(3) .
(4) .
(5) .
注: ,学生易与 相混淆.
2.化简:
(1) ;(2) ;(3) ;
(4) ( ); (5) ( ).
解:(1) .
(2) .
(3) .
(4) .
(5) .
(三)总结、扩展
对公式 ,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.
(四)布置作业
教材P213中1(2)、(3);2(1)、(2).
(五)板书设计
标 题
1.复习题 4.练习题
2.公式
3.例题
上一篇:二次根式的化简 教学设计
下一篇:二次根式的混合运算