课 题:函数的单调性
课 题:函数的单调性教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)【教学目标】1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】 函数单调性的概念、判断及证明.【教学难点】 根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习.【教学手段】 计算机、投影仪.【教学过程】一、创设情境,引入课题为了预测北京奥运会开幕式当天的天气情况,数学兴趣小组研究了XX年到XX年每年这一天的天气情况,下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.
引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及达到的时刻;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.教师指出:在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、降雨量、燃油价格、股票价格等.归纳:用函数观点看,其实这些例子反映的就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,是函数的重要性质,称为函数的单调性,同学们在初中对函数的这种性质就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数 的图象,并且观察自变量变化时,函数值的变化规律?预案:(1)函数 ,在整个定义域内 y随x的增大而增大;函数 ,在整个定义域内 y随x的增大而减小.(2)函数 ,在 上 y随x的增大而增大,在 上y随x的增大而减小.(3)函数 ,在 上 y随x的增大而减小,在 上y随x的增大而减小.引导学生进行分类描述 (增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数吗?预案:如果函数 在某个区间上随自变量x的增大,y也越来越大,我们说函数 在该区间上为增函数;如果函数 在某个区间上随自变量x的增大,y越来越小,我们说函数 在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观、描述性的认识.〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.抽象思维,形成概念问题1:如图是函数 的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.共3页,当前第1页123
上一篇:3.4 等比数列(第二课时)
下一篇:高中数学研究性学习