欢迎访问易文君范文网!

指数

johngko 分享 时间: 加入收藏 我要投稿 点赞

指数O3d易文君-文库范文网

教学目标
    1.理解分数指数的概念,把握有理指数幂的运算性质.
    (1) 理解n次方根,n次根式的概念及其性质,能根据性质进行相应的根式计算.
    (2) 能熟悉到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化.
    (3) 能利用有理指数运算性质简化根式运算.
    2.通过指数范围的扩大,使学生能理解运算的本质,熟悉到知识之间的联系和转化,熟悉到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力.
    3.通过对根式与分数指数幂的关系的熟悉,使学生能学会透过表面去认清事物的本质.
    教学建议
    教材分析
    (1)本节的教学重点是分数指数幂的概念及其运算性质.教学难点是根式的概念和分数指数幂的概念.
    (2)由于分数指数幂的概念是借助 次方根给出的,而 次根式, 次方根又是学生刚刚接触到的概念,也是比较生疏的.以此为基础去学习熟悉新知识自然是比较困难的.且 次方根,分数指数幂的定义都是用抽象字母和符号的形式给出的,学生在接受理解上也是比较困难的.基于以上原因,根式和分数指数幂的概念成为本节应突破的难点.
    (3)学习本节主要目的是将指数从整数指数推广到有理数指数,为指数函数的研究作好预备.且有理指数幂具备的运算性质还可以推广到无理指数幂,也就是说在运算上已将指数范围推广到了实数范围,为对数运算的出现作好了预备,而使这些成为可能的就是分数指数幂的引入.
    教法建议
    (1)根式概念的引入是本节教学的关键.为了让学生感到根式的学习是很自然也很必要的,不妨在设计时可以考虑以下几点:
    ①先以具体数字为例,复习正整数幂,介绍各部分的名称及运算的本质是乘方,让它与学生熟悉的运算联系起来,树立起转化的观点.
    ②当复习负指数幂时,由于与乘除共同有关,所以出现了分式,这样为分数指数幂的运算与根式相关作好预备.
    ③在引入根式时可先由学生知道的平方根和立方根入手,再大胆写出 即谁的四次方根等于16.指出2和2是它的四次方根后再把指数换成 ,写成 即谁的 次方等于 ,在语言描述的同时,也把数学的符号语言自然的给出.
    (2)在 次方根的定义中并没有将 次方根符号化原因是结论的多样性,不能乱表示,所以需要先研究规律,再把它符号化.按这样的研究思路学生对 次方根的熟悉逐层递进,直至找出运算上的规律.
    教学设计示例
    课题 根式
    教学目标:
    1.理解 次方根和 次根式的概念及其性质,能根据性质进行简单的根式计算.
    2.通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力.
    3.通过对根式的化简,使学生了解由非凡到一般的解决问题的方法,渗透分类讨论的思想.
    教学重点难点:
    重点是 次方根的概念及其取值规律.3页,当前第1123

精选图文

155095
领取福利

微信扫码领取福利

微信扫码分享