欢迎访问易文君范文网!

人教版高一数学《零点求法与方程及运用》教案

未知 分享 时间: 加入收藏 我要投稿 点赞
0

人教版高一数学《零点求法与方程及运用》教案qLo易文君-文库范文网

零点求法与方程及运用
一、概念认识:零点是函数 的零点,但不是点,是满足 的“ ”。
二、策略优化:
①定义法   ( 与 轴交点),
②方程法   (解方程 ),
③构造函数法,
三、运用体验:qLo易文君-文库范文网

四、经典训练:
例1: 是 的零点,若 ,则 的值满足        . 
【分析】函数 在 上是单调递增的,这个函数有零点,这个零点是唯一的,根据函数是单调递增性,在 上这个函数的函数值小于零,即 。
【考点】函数的应用。
【点评】在定义域上单调的函数如果有零点,则只能有唯一的零点,并且以这个零点为分界点把定义域分成两个区间,在其中一个区间内函数值都大于零,在另一个区间内函数值都小于零。
练习:1.“ ”是“函数 在区间 上存在零点 ”的         .充分非必 要条件 
例2已知函数 有零点,则 的取值范围是___________.
练习:若函数 在r上有两个零点,则实数k的取值范围为_____________      qLo易文君-文库范文网

练习:设函数 ,记 ,若函数 至少存在一个零点,则实数 的取值范围是           .      
练习:设函数  ,若函数 在 上恰有两个不同零点,则实数的 取值范围是      . 
例3:若方程 的解为 ,则不小于 的最小整数是           .5qLo易文君-文库范文网

例4:已知函数 ,在区间 上有最大值4,最小值1,设 .
(ⅰ)求 的值;
(ⅲ)方程 有三个不同的实数解,求实数 的范围.
解:(ⅰ)(1)   当 时, 上为增函数  
故    
当 上为减函数
故  
 即 .   .
(ⅲ)方程 化为
 ,
令 , 则方程化为  ( )
∵方程 有三个不同的实数解,
∴由 的图像知,
 有两个根 、 ,
且   或  ,                     
                                    

则    或   ∴                              
练习:已知二次函数 .
(1)若 ,试判断函数 零点个数;
(2) 若对 且 , ,试证明 ,使 成立;
解:(1)   
 当 时 ,
函数 有一个零点;当 时, ,函数 有两个零点。
 
在 内必有一个实根。即 ,使 成立。
五、课外拓展:
1.已知函数 的零点依次为a,b,c,则          .2页,当前第112

精选图文

155142
领取福利

微信扫码领取福利

微信扫码分享

月会员
每天0次下载
1元/30天
直接下载
单次下载
0元/次
微信支付
支付宝支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭