欢迎访问易文君范文网!

一元二次不等式解法

小学作文 分享 时间: 加入收藏 我要投稿 点赞

一元二次不等式解法(通用5篇)qe0易文君-文库范文网

一元二次不等式解法 篇1

  第十二教时教材:目的:从一元二次方程、一元二次不等式与二次函数的关系出发,掌握运用二次函数求解一元二次不等式的方法。过程 :一、课题:一元二次不等式的解法先回忆一下初中学过的一元一次不等式的解法:如 2x-7>0 x>     y这里利用不等式的性质解题                                 从另一个角度考虑:令 y=2x-7 作一次函数图象:      xco引导观察,并列表,见 p17  略             当 x=3.5 时, y=0 即 2x-7=0当 x<3.5 时, y<0 即 2x-7<0当 x>3.5 时, y>0 即 2x-7>0结论:略 见p17注意强调:1°直线与 x轴的交点x0是方程 ax+b=0的解2°当 a>0 时,  ax+b>0的解集为 {x | x > x0 } 当 a<0 时,  ax+b<0可化为 -ax-b<0来解y二、一元二次不等式的解法同样用图象来解,实例:y=x2-x-6  作图、列表、观察-2  o      3    x 当 x=-2 或 x=3 时, y=0 即 x2-x-6=0当 x<-2 或 x>3 时, y>0 即 x2-x-6>0当   -2<x<3    时, y<0 即 x2-x-6<0∴方程 x2-x-6=0 的解集:{ x | x = -2或 x = 3 }不等式 x2-x-6 > 0 的解集:{ x | x < -2或 x > 3 }不等式 x2-x-6 < 0 的解集:{ x | -2 < x < 3 }这是 △>0 的情况:若 △=0 ,  △<0 分别作图观察讨论得出结论:见 p18--19说明:上述结论是一元二次不等式 ax+bx+c>0(<0) 当 a>0时的情况若 a<0, 一般可先把二次项系数化成正数再求解三、例题 p19 例一至例四练习:(板演)有时间多余,则处理《课课练》p14  “例题推荐”四、小结:一元二次不等式解法(务必联系图象法)五、作业:p21 习题 1.5            《课课练》第8课余下部分qe0易文君-文库范文网

一元二次不等式解法 篇2

  各位评委、各位专家:qe0易文君-文库范文网

  大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。qe0易文君-文库范文网

  下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。qe0易文君-文库范文网

  一、教材分析qe0易文君-文库范文网

  (一)教材的地位和作用qe0易文君-文库范文网

  “一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。qe0易文君-文库范文网

  (二)教学内容qe0易文君-文库范文网

  本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。qe0易文君-文库范文网

  二、教学目标分析qe0易文君-文库范文网

  根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:qe0易文君-文库范文网

  知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。qe0易文君-文库范文网

  能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。qe0易文君-文库范文网

  情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。qe0易文君-文库范文网

  三、重难点分析qe0易文君-文库范文网

  一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。qe0易文君-文库范文网

  要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。qe0易文君-文库范文网

  四、教法与学法分析qe0易文君-文库范文网

  (一)学法指导qe0易文君-文库范文网

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。qe0易文君-文库范文网

  (二)教法分析qe0易文君-文库范文网

  本节课设计的指导思想是:现代认知心理学——建构主义学习理论。qe0易文君-文库范文网

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。qe0易文君-文库范文网

  本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。qe0易文君-文库范文网

  五、课堂设计qe0易文君-文库范文网

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。qe0易文君-文库范文网

  (一)创设情景,引出“三个一次”的关系qe0易文君-文库范文网

  本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“>”则变成一元二次不等式x2-x-6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。qe0易文君-文库范文网

  为此,我设计了以下几个问题:qe0易文君-文库范文网

  1、请同学们解以下方程和不等式:qe0易文君-文库范文网

  ①2x-7=0;②2x-7>0;③2x-7<0qe0易文君-文库范文网

  学生回答,我板书。qe0易文君-文库范文网

  2、我指出:2x-7>0和2x-7<0的解实际上只需利用不等式基本性质就容易得到。qe0易文君-文库范文网

  3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。qe0易文君-文库范文网

  4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:qe0易文君-文库范文网

  ①2x-7=0的解恰是函数y=2x-7的图象与x轴qe0易文君-文库范文网

  交点的横坐标。qe0易文君-文库范文网

  ②2x-7>0的解集正是函数y=2x-7的图象qe0易文君-文库范文网

  在x轴的上方的点的横坐标的集合。qe0易文君-文库范文网

  ③2x-7<0的解集正是函数y=2x-7的图象qe0易文君-文库范文网

  在x轴的下方的点的横坐标的集合。qe0易文君-文库范文网

  三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-6>0的解集。qe0易文君-文库范文网

  (二)比旧悟新,引出“三个二次”的关系qe0易文君-文库范文网

  为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。qe0易文君-文库范文网

  看函数y=x2-x-6的图象并说出:qe0易文君-文库范文网

  ①方程x2-x-6=0的解是qe0易文君-文库范文网

  x=-2或x=3 ;qe0易文君-文库范文网

  ②不等式x2-x-6>0的解集是qe0易文君-文库范文网

  {x|x<-2,或x>3};qe0易文君-文库范文网

  ③不等式x2-x-6<0的解集是qe0易文君-文库范文网

  {x|-2qe0易文君-文库范文网

  此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。qe0易文君-文库范文网

  学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a>0),那么图象与x轴的位置关系又怎样呢?(学生回答:△>0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△<0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c>0与ax2+bx+c<0的解集与函数y=ax2+bx+c的图象有怎样的关系?qe0易文君-文库范文网

  (三)归纳提炼,得出“三个二次”的关系qe0易文君-文库范文网

  1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。qe0易文君-文库范文网

  2、此时提出:若a < 0时,怎样求解不等式ax2+bx+c > 0及ax2+bx+c < 0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)qe0易文君-文库范文网

  (四)应用新知,熟练掌握一元二次不等式的解集qe0易文君-文库范文网

  借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:qe0易文君-文库范文网

  例1、解不等式2x2-3x-2>0qe0易文君-文库范文网

  解:因为Δ>0,方程2x2-3x-2=0的解是qe0易文君-文库范文网

  x1= ,x2=2qe0易文君-文库范文网

  所以,不等式的解集是qe0易文君-文库范文网

  { x| x< ,或x>2}qe0易文君-文库范文网

  例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。qe0易文君-文库范文网

  下面我们接着学习课本例2。qe0易文君-文库范文网

  例2 解不等式-3x2+6x > 2qe0易文君-文库范文网

  课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a<0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。qe0易文君-文库范文网

  通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。qe0易文君-文库范文网

  例3 解不等式4x2-4x+1>0qe0易文君-文库范文网

  例4 解不等式-x2+2x-3>0qe0易文君-文库范文网

  分别突出了“△=0”、“△<0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。qe0易文君-文库范文网

  4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。qe0易文君-文库范文网

  (五)总结qe0易文君-文库范文网

  解一元二次不等式的“四部曲”:qe0易文君-文库范文网

  (1)把二次项的系数化为正数qe0易文君-文库范文网

  (2)计算判别式Δqe0易文君-文库范文网

  (3)解对应的一元二次方程qe0易文君-文库范文网

  (4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集qe0易文君-文库范文网

  (六)作业布置qe0易文君-文库范文网

  为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。qe0易文君-文库范文网

  (1)必做题:习题1.5的1、3题qe0易文君-文库范文网

  (2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c>0的解集为M,ax2+bx+c<0的解集为N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+3>0的解集是R,求实数k的取值范围。qe0易文君-文库范文网

  (七)板书设计qe0易文君-文库范文网

  一元二次不等式解法(1)qe0易文君-文库范文网

  六、教学效果评价qe0易文君-文库范文网

  本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。qe0易文君-文库范文网

一元二次不等式解法 篇3

  一、教材分析qe0易文君-文库范文网

  (一)教材的地位和作用qe0易文君-文库范文网

  “一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。qe0易文君-文库范文网

  (二)教学内容qe0易文君-文库范文网

  本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。qe0易文君-文库范文网

  二、教学目标分析qe0易文君-文库范文网

  根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:qe0易文君-文库范文网

  知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。qe0易文君-文库范文网

  能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。qe0易文君-文库范文网

  情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。qe0易文君-文库范文网

  三、重难点分析qe0易文君-文库范文网

  一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。qe0易文君-文库范文网

  要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。qe0易文君-文库范文网

  四、教法与学法分析qe0易文君-文库范文网

  (一)学法指导qe0易文君-文库范文网

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。qe0易文君-文库范文网

  (二)教法分析qe0易文君-文库范文网

  本节课设计的指导思想是:现代认知心理学——建构主义学习理论。qe0易文君-文库范文网

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。qe0易文君-文库范文网

  本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。qe0易文君-文库范文网

  五、课堂设计qe0易文君-文库范文网

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。qe0易文君-文库范文网

  (一)创设情景,引出“三个一次”的关系qe0易文君-文库范文网

  本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“>”则变成一元二次不等式x2-x-6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。qe0易文君-文库范文网

  为此,我设计了以下几个问题:qe0易文君-文库范文网

  1、请同学们解以下方程和不等式:qe0易文君-文库范文网

  ①2x-7=0;②2x-7>0;③2x-7<0qe0易文君-文库范文网

  学生回答,我板书。qe0易文君-文库范文网

  2、我指出:2x-7>0和2x-7<0的解实际上只需利用不等式基本性质就容易得到。qe0易文君-文库范文网

  3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。qe0易文君-文库范文网

  4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:qe0易文君-文库范文网

  ①2x-7=0的解恰是函数y=2x-7的图象与x轴qe0易文君-文库范文网

  交点的横坐标。qe0易文君-文库范文网

  ②2x-7>0的解集正是函数y=2x-7的图象qe0易文君-文库范文网

  在x轴的上方的点的横坐标的集合。qe0易文君-文库范文网

  ③2x-7<0的解集正是函数y=2x-7的图象qe0易文君-文库范文网

  在x轴的下方的点的横坐标的集合。qe0易文君-文库范文网

  三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-6>0的解集。qe0易文君-文库范文网

  (二)比旧悟新,引出“三个二次”的关系qe0易文君-文库范文网

  为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。qe0易文君-文库范文网

  看函数y=x2-x-6的图象并说出:qe0易文君-文库范文网

  ①方程x2-x-6=0的解是qe0易文君-文库范文网

  x=-2或x=3 ;qe0易文君-文库范文网

  ②不等式x2-x-6>0的解集是 qe0易文君-文库范文网

  {x|x<-2,或x>3};qe0易文君-文库范文网

  ③不等式x2-x-6<0的解集是qe0易文君-文库范文网

  {x|-2qe0易文君-文库范文网

  此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。qe0易文君-文库范文网

  学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a>0),那么图象与x轴的位置关系又怎样呢?(学生回答:△>0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△<0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c>0与ax2+bx+c<0的解集与函数y=ax2+bx+c的图象有怎样的关系?qe0易文君-文库范文网

  (三)归纳提炼,得出“三个二次”的关系qe0易文君-文库范文网

  1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。qe0易文君-文库范文网

  2、此时提出:若a < 0时,怎样求解不等式ax2+bx+c > 0及ax2+bx+c < 0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)qe0易文君-文库范文网

  (四)应用新知,熟练掌握一元二次不等式的解集qe0易文君-文库范文网

  借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:qe0易文君-文库范文网

  例1、解不等式2x2-3x-2>0qe0易文君-文库范文网

  解:因为δ>0,方程2x2-3x-2=0的解是qe0易文君-文库范文网

  x1= ,x2=2qe0易文君-文库范文网

  所以,不等式的解集是qe0易文君-文库范文网

  { x| x< ,或x>2}qe0易文君-文库范文网

  例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。qe0易文君-文库范文网

  下面我们接着学习课本例2。qe0易文君-文库范文网

  例2 解不等式-3x2+6x > 2qe0易文君-文库范文网

  课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a<0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。qe0易文君-文库范文网

  通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。qe0易文君-文库范文网

  例3 解不等式4x2-4x+1>0qe0易文君-文库范文网

  例4 解不等式-x2+2x-3>0qe0易文君-文库范文网

  分别突出了“△=0”、“△<0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。qe0易文君-文库范文网

  4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。qe0易文君-文库范文网

  (五)总结qe0易文君-文库范文网

  解一元二次不等式的“四部曲”:qe0易文君-文库范文网

  (1)把二次项的系数化为正数qe0易文君-文库范文网

  (2)计算判别式δqe0易文君-文库范文网

  (3)解对应的一元二次方程qe0易文君-文库范文网

  (4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算δ→三求根→四写解集qe0易文君-文库范文网

  (六)作业布置qe0易文君-文库范文网

  为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。qe0易文君-文库范文网

  (1)必做题:习题1.5的1、3题qe0易文君-文库范文网

  (2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为p,ax2+bx+c>0的解集为m,ax2+bx+c<0的解集为n,那么p∪m∪n=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+3>0的解集是r,求实数k的取值范围。qe0易文君-文库范文网

  (七)板书设计qe0易文君-文库范文网

  一元二次不等式解法(1)qe0易文君-文库范文网

  六、教学效果评价qe0易文君-文库范文网

  本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。qe0易文君-文库范文网

一元二次不等式解法 篇4

  凉山民族中学   李承志qe0易文君-文库范文网

  一、      教材简析qe0易文君-文库范文网

  1、地位和价值qe0易文君-文库范文网

  <<一元二次不等式解法>>是高中数学新教材第一册(上)第一章第5节的内容。在此之前,学生在初中已学习了一元一次不等式,一元一次不等式组,一元二次方程,二次函数,绝对值不等式(高中),这为过渡到本节的学习起着铺垫作用。一元二次不等式解法是解不等式的基础和核心,它在高中代数中起着广泛应用的工具作用,蕴藏着“数与形结合”的重要思想方法,它已成为代数、三角、解析几何交汇综合的重要部分,是高考综合题的热点。qe0易文君-文库范文网

  2、教材结构简介qe0易文君-文库范文网

  教材首先以一个一次函数图象的应用解一元一次不等式,引出图象法,然后给出一个二次函数,通过具体画图象,提出问题。再一般地给出了二次函数图象解二次不等式的结论。课本精选了四个解不等式的例题,并配有相应的练习和习题。它的后一小节为解可转化为一元二次不等式的分式不等式。qe0易文君-文库范文网

  二、      教育教学观qe0易文君-文库范文网

  1、    学生为主体,重学生参与学习活动。qe0易文君-文库范文网

  2、    重过程。按照认知规律及学生认知特点,由浅入深,由表及里,设计一系列教学活动过程。体现由“实践……观察……归纳 ……猜想……  结论…… 验证应用”的循环往复的认知过程。qe0易文君-文库范文网

  3、          重能力与态度的培养,在活动中培养学生自主、交流合作、探究、发现的能力。重科学严谨的个性品质。重参与学习的兴趣和体验。qe0易文君-文库范文网

  4、          重指导点拨。在学生自主探究、实践的基础上,相机启发,恰当点拨,促进学生知识由感性向理性提升,由具体到概括抽象,形成师生间的有效互动。qe0易文君-文库范文网

  三、      教学目标qe0易文君-文库范文网

  基于上述认识,及不等式的基本知识,同时学生在初中已学过二次函数,考虑到学生已有的认知结构心理特征,制订如下教学目标:qe0易文君-文库范文网

  1、        知识目标:一元二次方程,一元二次不等式及二次函数间的联系,及利用二次函数的图象求解一元二次不等式。qe0易文君-文库范文网

  2、        能力目标:数形结合的思想(应用二次函数图象解不等式)qe0易文君-文库范文网

  3、        情感态度目标:通过问题解决,培养学生自主参与学习,以及严谨求实的态度。qe0易文君-文库范文网

  四、      教与学重点、难点qe0易文君-文库范文网

  1、重点:用图象解一元二次不等式。qe0易文君-文库范文网

  2、难点:围绕二次函数图象、性质这一主线,解决三个“二次”的联系和应用。qe0易文君-文库范文网

  五、      教法与学法qe0易文君-文库范文网

  1、学情分析及学法:函数与图象应用是初中生数学的薄弱之处,同时刚进入高中的学生,对高中学习还很不适应,需要加强主动学习的指导。基于此,在学生初中知识经验的基础上,以旧探新;以一系列问题,促进主体的学习活动(如画图象、读图等),建构知识;以问题情景激励学生参与,在恰当时机进行点拨启发,练、导结合,讲练结合;通过学生自己做数学,教师启发指导,以及学生领悟,实现学生对知识的再创造和主动建构;具体通过教材中的问题及设计的问题情景,给予学生活动的空间,通过这些问题(“脚手架”)的解决,使学生逐步攀升,达到知识与能力的目标。qe0易文君-文库范文网

  2、教法:数学教学是数学教与学活动过程的教学,学生是在探究与发现中建构知识,发展能力的,因而确定以“问题解决”为教法。实现学生在教师指导下的发现探索。同时所学内容适宜用“计算机高中数学问题处理系统”辅助教学。qe0易文君-文库范文网

  六、教学手段及工具:qe0易文君-文库范文网

  多媒体教学手段,高中数学问题处理系统。qe0易文君-文库范文网

  七、教学设计及教学过程qe0易文君-文库范文网

  1、复习设问,引入新课qe0易文君-文库范文网

  高中数学新教材第一册(上)《一元二次不等式解法》(第一课时)说课稿.rarqe0易文君-文库范文网

一元二次不等式解法 篇5

  各位评委、各位专家:qe0易文君-文库范文网

  大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。qe0易文君-文库范文网

  下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。qe0易文君-文库范文网

  一、教材分析qe0易文君-文库范文网

  (一)教材的地位和作用qe0易文君-文库范文网

  “一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。qe0易文君-文库范文网

  (二)教学内容qe0易文君-文库范文网

  本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。qe0易文君-文库范文网

  二、教学目标分析qe0易文君-文库范文网

  根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:qe0易文君-文库范文网

  知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。qe0易文君-文库范文网

  能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。qe0易文君-文库范文网

  情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。qe0易文君-文库范文网

  三、重难点分析qe0易文君-文库范文网

  一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。qe0易文君-文库范文网

  要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。qe0易文君-文库范文网

  四、教法与学法分析qe0易文君-文库范文网

  (一)学法指导qe0易文君-文库范文网

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。qe0易文君-文库范文网

  (二)教法分析qe0易文君-文库范文网

  本节课设计的指导思想是:现代认知心理学——建构主义学习理论。qe0易文君-文库范文网

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。qe0易文君-文库范文网

  本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。qe0易文君-文库范文网

  五、课堂设计qe0易文君-文库范文网

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。qe0易文君-文库范文网

  (一)创设情景,引出“三个一次”的关系qe0易文君-文库范文网

  本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“>”则变成一元二次不等式x2-x-6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。qe0易文君-文库范文网

  为此,我设计了以下几个问题:qe0易文君-文库范文网

  1、请同学们解以下方程和不等式:qe0易文君-文库范文网

  ①2x-7=0;②2x-7>0;③2x-7<0qe0易文君-文库范文网

  学生回答,我板书。qe0易文君-文库范文网

  2、我指出:2x-7>0和2x-7<0的解实际上只需利用不等式基本性质就容易得到。qe0易文君-文库范文网

  3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。qe0易文君-文库范文网

  4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:qe0易文君-文库范文网

  ①2x-7=0的解恰是函数y=2x-7的图象与x轴qe0易文君-文库范文网

  交点的横坐标。qe0易文君-文库范文网

  ②2x-7>0的解集正是函数y=2x-7的图象qe0易文君-文库范文网

  在x轴的上方的点的横坐标的集合。qe0易文君-文库范文网

  ③2x-7<0的解集正是函数y=2x-7的图象qe0易文君-文库范文网

  在x轴的下方的点的横坐标的集合。qe0易文君-文库范文网

  三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-6>0的解集。qe0易文君-文库范文网

  (二)比旧悟新,引出“三个二次”的关系qe0易文君-文库范文网

  为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。qe0易文君-文库范文网

  看函数y=x2-x-6的图象并说出:qe0易文君-文库范文网

  ①方程x2-x-6=0的解是qe0易文君-文库范文网

  x=-2或x=3 ;qe0易文君-文库范文网

  ②不等式x2-x-6>0的解集是qe0易文君-文库范文网

  {x|x<-2,或x>3};qe0易文君-文库范文网

  ③不等式x2-x-6<0的解集是qe0易文君-文库范文网

  {x|-2qe0易文君-文库范文网

  此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。qe0易文君-文库范文网

  学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a>0),那么图象与x轴的位置关系又怎样呢?(学生回答:△>0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△<0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c>0与ax2+bx+c<0的解集与函数y=ax2+bx+c的图象有怎样的关系?qe0易文君-文库范文网

  (三)归纳提炼,得出“三个二次”的关系qe0易文君-文库范文网

  1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。qe0易文君-文库范文网

  2、此时提出:若a < 0时,怎样求解不等式ax2+bx+c > 0及ax2+bx+c < 0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)qe0易文君-文库范文网

  (四)应用新知,熟练掌握一元二次不等式的解集qe0易文君-文库范文网

  借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:qe0易文君-文库范文网

  例1、解不等式2x2-3x-2>0qe0易文君-文库范文网

  解:因为δ>0,方程2x2-3x-2=0的解是qe0易文君-文库范文网

  x1= ,x2=2qe0易文君-文库范文网

  所以,不等式的解集是qe0易文君-文库范文网

  { x| x< ,或x>2}qe0易文君-文库范文网

  例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。qe0易文君-文库范文网

  下面我们接着学习课本例2。qe0易文君-文库范文网

  例2 解不等式-3x2+6x > 2qe0易文君-文库范文网

  课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a<0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。qe0易文君-文库范文网

  通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。qe0易文君-文库范文网

  例3 解不等式4x2-4x+1>0qe0易文君-文库范文网

  例4 解不等式-x2+2x-3>0qe0易文君-文库范文网

  分别突出了“△=0”、“△<0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。qe0易文君-文库范文网

  4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。qe0易文君-文库范文网

  (五)总结qe0易文君-文库范文网

  解一元二次不等式的“四部曲”:qe0易文君-文库范文网

  (1)把二次项的系数化为正数qe0易文君-文库范文网

  (2)计算判别式δqe0易文君-文库范文网

  (3)解对应的一元二次方程qe0易文君-文库范文网

  (4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算δ→三求根→四写解集qe0易文君-文库范文网

  (六)作业布置qe0易文君-文库范文网

  为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。qe0易文君-文库范文网

  (1)必做题:习题1.5的1、3题qe0易文君-文库范文网

  (2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为p,ax2+bx+c>0的解集为m,ax2+bx+c<0的解集为n,那么p∪m∪n=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+3>0的解集是r,求实数k的取值范围。qe0易文君-文库范文网

  (七)板书设计qe0易文君-文库范文网

  一元二次不等式解法(1)qe0易文君-文库范文网

  六、教学效果评价qe0易文君-文库范文网

  本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。qe0易文君-文库范文网

精选图文

155163
领取福利

微信扫码领取福利

微信扫码分享