《鸡兔同笼》(通用17篇)
《鸡兔同笼》 篇1
教学内容:人教版实验教材六年级上册112页——114页。
教学目标:
1、了解“鸡兔同笼” 问题,尝试用不同的方法解决“鸡兔同笼”问题。并使学生体会到假设法和方程法的一般性,并能运用这两种方法解决“鸡兔同笼”问题。
2、在解决问题的过程中培养学生的逻辑推理能力,感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心。
3、感受古代数学问题的趣味性,感受祖国优秀数学文化的熏陶和感染。
教学过程:
课前:教师采用简笔画形式画鸡和兔,激发学生学习兴趣。
一:铺垫练习,导入新课。
如果把鸡和兔关在一个笼子里,会发生哪些有趣的事情呢?
1、铺垫练习:
(1)现在笼子里有3只鸡和2只兔,算一算一共有多少条腿?说一说你是怎么算的?
(2)兔子很羡慕鸡用两条腿走路,它也想试试用2条腿走路,怎么办呢?兔子腿就可以看成几条了?(2条)它既然两条腿了,我们可以暂时把它当成鸡,这时一共就有5只鸡,这时地上有几条腿?(10条),少的4条去哪儿了?如果地上少了8条腿,是几只兔子在学鸡?
(3)鸡也很佩服兔子用4条腿走路,它决定用翅膀支在地上来当腿,鸡也有4条腿了,我们可以暂时把鸡看成兔子,这时就有5只兔子了。这时地上有几条腿了?(20条)为什么会多6条呢?(因为有了3只鸡在学兔子)如果地上多了10条腿,是几只鸡在学兔子呢?
2、如果只告诉你鸡兔一共几个头、一共几条腿,让你求鸡兔各有几只,这样的问题就是我国古代著名的数学趣题——鸡兔同笼问题(板书课题)。
二、探究新知
1、出示题目(例1):笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?
(1)列表法:你能不能猜测一下鸡兔可能各有几只?
(找两名学生先猜一猜)
(2)请同学们按顺序113页的表格填完整。
(3)找到答案了吗?鸡兔各有几只?
(4)像这样一种一种试,最后找出答案,我们称为“列表法”,对“列表法”你有什么想说的?(鸡兔的只数再多些就太麻烦了。)
2、那你还有其它的解决方法吗?比一比,看谁的方法多并且巧妙。
(假设法和方程)
反馈:找4名学生板演(两种假设,两种方程)由学生自己讲解,请其他学生提问题。(用方程解决时如果设鸡为未知数,那么过程中会出现负数,在这儿教师可以适当引导,或者等号左右同时变号,或者只设兔为未知数。)
三、巩固练习
1、早在15XX年前,我国古代数学名著《孙子算经》中就记载了一道有关鸡兔同笼的数学趣题。p112
生活中还有很多类似的鸡兔同笼问题,我们一起来看看。
2、p115,第二题
3、p116,第一题
四、小结:今天同学们用方程、假设法解决了鸡兔同笼问题,希望同学们在今后的生活中能够用数学的眼光去观察生活,解决生活中的问题。
《鸡兔同笼》 篇2
通过研读教材和教学用书,我知道鸡兔同笼问题最早出现在我国古代的一本数学著作《孙子算经》中,虽历经1500多年,该类问题还是向我们展现出了其巨大的魅力。二、三年级的奥数中有,五、六年级的教材中有,到了初中还要学,那么该类问题中究竟蕴含着怎样的数学思想,我们在教学中应该怎样构建该类问题模型,教给学生解决该类问题的方法,使学生的数学思维得到相应的发展呢?带着这样的思考,我不断地查阅资料,寻找我课堂教学的立足点。很幸运的是在查阅资料的过程中我有机会读到了《“鸡兔同笼”问题中的数学思想方法及其渗透策略》这篇文章,其中有这样一段话给了我很大的启发。
这段话给我这节课的教学设计起到了很好的理论支撑的作用。这段话中提到“当转化、猜想、列举、画图、假设、建模、代数、抬脚等多种数学思想方法同时作用于“鸡兔同笼”问题中时,它们之间必然存在相互关联之处。转化为猜想、列举、画图等提供了便捷,猜想是列举的开始,列举则是假设的前奏,画图是对列举的结果的形象呈现和为假设提供的直观支撑,假设是对前面诸法的有效提升,建模则是假设的必然结果,代数是假设的联想产物,抬脚无非是假设的另一种特殊形式。”
“如果按思想方法的作用给其分类,转化是解决“鸡兔同笼”问题中的基础性的思想方法,不可少之;猜测、列举、画图、抬脚是解决“鸡兔同笼”问题中的颇有局限性的思想方法,虽为假设做好了铺垫或延伸,但会受到数目大小或奇偶性的限制,不能广泛用之;真正能够适应于此类问题的具有普遍意义的一般性方法,无疑还是假设和代数的思想方法。如果按思想方法的新旧给上述思想方法分类,转化、猜想、列举、画图、建模和代数的思想方法,都是在前面教学中教师多次渗透、学生领悟较深的思想方法,惟有假设和抬脚才是本节课中新出现的思想方法,而抬脚不过是特殊的假设,且具有很强的局限性。由此看来,学生真正最需要获得的,又能适应解决问题普遍性要求的一种新的数学思想方法就是假设。”在进行了充分的思考与备课之后,我如期的上了这节课,通过对这节课的实际教学,检查了学生这节课的学习效果之后,我对本节课有了以下几点反思:
1、体现了解决问题策略的多样化与优化
鸡兔同笼问题作为六年级数学广角的内容,那它的思维含量必然很高,由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:列表法、假设法、列方程、画图法、抬脚法即古人的砍足法,在进行练习时,我先让学生选择自己喜欢的方法进行接的解答,指名生汇报后,进一步问:“还可以怎样解?”促进学生去思考更多的解法,并尽可能多的让学生说出解法,最后比较哪种算法比较好。从列表的枚举法到假设的算术法,不仅从思维上层层递进,而且更好地体现了解决问题策略的多样化与优化。
2、注重了数学思想、数学文化的传承
“鸡兔同笼”是我国民间广为流传的数学趣题,教学中,我从该趣题引入,到解决该趣题,到感悟古人解决该类问题的方法,揭去了它令人生畏的奥数面纱,还其生动有趣的一面。通过学习,不仅使学生感受了祖先的聪明才智,渗透一种古代数学文化,更重要的是体会了其中蕴含的丰富数学思想方法,培养了学生的学习兴趣和能力。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。
3、形成了假设的数学思想
课前,我就感受到了这节课容量大,学生难理解,如果一节课中要求学生理解所有的思想内涵,必将导致课堂内容学习的拥堵和孩子们学习的不知所措。教学中,我并没有平均分配学习时间和关注度,而是结合孩子们认知方式的,选取了算术解决的假设模型为本课数学思想的重点去渗透,让孩子们在学习解决问题的过程中,在不知不觉的对比中,体会数学思想。正如一些听课老师所说的,学生能够提出用假设法解决鸡兔同笼问题,那这节课的教学目标就已经达到了,因为他已经体验和形成了假设的数学思想。
4、构建了该类问题的数学模型
在学生重点掌握了两种解题思路后,我话锋一转,告诉同学们“鸡兔同笼”问题并不单指“鸡兔同笼”,该类问题在我们的生活中经常遇到,如龟鹤问题、民谣中的人狗问题、租大船小船问题等。明确其在生活中的应用,体现数学的生活味和应用价值。让学生感受到“鸡兔同笼”问题的学习,贵在学习一种假设推理与代数方程的思想方法,贵在用来解决生活中类似于鸡兔同笼的变式问题。拓宽了对“鸡兔同笼”问题的认识,构建了该类问题的数学模型,形成了知识的迁移。
《鸡兔同笼》 篇3
教学内容:
人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。
教材分析:
“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:
1、理解掌握解决问题的不同思路和方法。
2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学难点:
理解掌握假设法,能运用假设法解决数学问题。
教学具准备:
表格
教学过程:
一、导入
师生谈话、导入新知
(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)
二、探究新知
1、质疑:提问:
(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?
(2)鸡和兔相比:什么比什么多?多多少?
(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?
(4)尝试解决,交流想法;
(5)出示交换已知条件以后的题目。
(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)
2、教学例1
(1)出示例题1。
师:请同学们读一读,和前面的题目一样吗?什么地方不一样?
请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)
(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)
(2)学生自由猜测。
师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。
(3)验证猜想。
(4)观察发现规律。
(5)总结概括:在数学中这种方法叫列表法。(板书)。
(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)
质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?
3、探讨假设法:
a、假设全是兔。
1、师以童话故事的形式引入全是兔的情境。
2、集体探究,引导交流。
b、假设全是鸡。
1、师再次继续童话故事引入全是鸡的情境。
2、小组独立探究交流假设全是鸡的计算方法。
3、指名小组展示并叙述计算过程。
4、小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)
5、延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。
(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)
三、练习巩固
出示练习题。
四、课后总结
(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)
《鸡兔同笼》 篇4
《鸡兔同笼》一课是北师大版小学数学五年级上册“数学好玩”板块中“尝试与猜测”一课的内容,本节课思维含量大,对学生来说难学。解决这道数学古题、趣题的方法有好多种,但教材只向学生介绍了“列表法”这一种方法。现对本节的教学做以下反思:
一、课前思考
1、紧贴教材,使用教材。
“鸡兔同笼”问题的解决方法有好多种,但是教材只向学生介绍了“列表法”这一种。因为“列表法”是解决问题最常用、最一般的方法,针对的是百分之九十的学生能完全掌握,做到了几乎面向全体,关注差异。而表格中的数据又能让学生更直观的进行探索规律,规律的掌握又能促进学生更好地利用列表快速解决问题。同时“列表法”这一解决问题的策略从数学层面上讲具有广泛性,我想这也正是教材采用它的真正目的,做到了“授之以渔”。因此,在本节课的教学中我紧扣“列表法”进行教学,让学生熟练掌握“列表法”这一方法。
2、尊重学生,找准起点。
“鸡兔同笼”问题对于小学生来说“难”,要突破难点,就要把握学生的认知起点。孩子们的困难在于如何应用“列表法”进行逐一举例,以及通过表格发现“鸡兔同笼”问题中所蕴含的规律,而非合作探究出“跳跃举例”和“取中举例”这两种列举方法。因此,在教学中我将教学重点设置为引导学生经历逐一举例和规律探索,有了这一铺垫,学习的难点就迎刃而解。
3、方法教学,注重引导。
数学教学就是方法教学,在本节课中我想交给学生的方法有:解决问题尝试猜测;遇到难题化繁为简;观察数据,先分后总;探寻规律,注重合作。学习方法的渗透对学生来说价值更大。
4、关注学生,积极参与。
教师是学生学习的引导者、组织者和合作者,学生在学习的过程中,我要及时参与到他们中来,帮他们解疑释惑。促进学生更加高效的学习。
二、课后思考
(一)从课标角度去看
1、《课标》理念
使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
2、体现四基
一节好的数学课应该体现四基:不但要让学生掌握数学基础知识,训练数学基本技能,还要领悟数学基本思想,积累数学基本活动经验。
3、培养核心素养
除此之外,我还注重数据分析观念、运算能力、推理能力、应用意识和创新意识这些核心素养的培养,力求学生全面发展。
(二)从教材的角度去看
1、紧贴教材编写意图
在有限的四十分钟内让学生学会解决“鸡兔同笼”问题,“列表法”是众多方法的基础,因此本课教学针对“列表法”展开教学与探索。
2、学会使用教材
作为一个教师,要合理地使用教材教而不是教教材,因此我们要深挖教材,把表象的东西形象化,在本课中借助“鸡兔同笼”化简题向学生渗透“化繁为简”的数学思想,借助表格让学生探寻“鸡兔同笼”问题中所蕴含的规律,找到精髓,提供给学生解决“鸡兔同笼”类型题的方法,学会举一反三。
3、创新教材
表格对于学生来说并不陌生,但学会列表,表格中的项目怎么填对学生来说较难,因此对于列表法的形成我采用了动态化的活动,先让学生猜有9个头,鸡和兔会有那些可能,这样很自然形成了表哥的前两项,再出示有26条腿,那么刚才的猜想都对吗?为什么?学生这时就会想到还要看每次猜想的鸡和兔的腿数是否是26条才行。这样就形成了第三列,让表格形象生动起来,同时也降低了学生学习的难度。在课尾,向学生介绍古人用的方法以及其他解决的方法,不但让学生体会到古人超长的智慧,还拓展了他们的知识面。
(三)教师的角度
1、引导者
始终做一个引导者,把学生引到探究的路上,在恰当的时机进行点拨,帮他们解疑释惑。
2、组织者
当学生学到本节的重点时,我就及时组织活动,让他们通过操作活动来探寻知识,掌握方法。
3、参与者
在学生的合作学习中,做一个参与者,和他们一起思考,找准学生的疑惑之处进行点拨指导。让学生的合作学习更有效。
(四)学生的角度
1、找准起点
学生的学习基础决定这学生的起点。孩子们学这节课有困难,虽然“取中列举”和“跳跃列举”对学生来说是难点,但规律的探寻对学生来说更为重要。只有掌握了规律学生才能情不自禁的使用“跳跃列举”和“取中列举”,这样难点对学生来说就不是难点而是意外的收获,更让他们惊喜。
2、学习方法
学生在整个学习中始终是学习的主人,动手实践、自主探索与合作交流也是他们本节课学习数学的重要方式,也是学生喜闻乐见的方式,这样的学习效果更佳!
3、学会知识与方法
孩子们在本节课中不但学会了用列表法解决鸡兔同笼问题,同时还收获了解决问题的策略尝试与猜想;解决难题的方法化繁为简;观察的顺序由上而下或由下而上,先分后总的有序有效观察。
三、不足
1、本节课由于要让学生充分的探索与体验因此在时间上有所拖延。但是对于学生掌握知识来说,只有充分体验了才不会忘记。我想多给学生一些等待,静待花开的声音!
2、本节课的氛围不够浓厚。
本节课的思维含量比较大,学生随着学习内容会不断地去思考,理性大于感性,因此本节课不是热热闹闹的课堂。
我想,“鸡兔同笼”问题不只是知识的传授,它更想传播一种思维的方式和思考的方法。
问题的策略,这样一节课的时间就显得不够用了,导致最后没有时间来解决生活中更多类型的实际问题。
《鸡兔同笼》 篇5
教学目标:
1、了解“鸡兔同笼”的问题,感受我国古代数学问题的趣味性,提高学习数学的兴趣。
2、通过自主探索,合作交流,让学生体会代数方法的优越性。
教学重点、难点:
1、重点:尝试用不同的方法解决问题,使学生体会代数方法的优越性。
2、难点:在解决问题时培养学生推理能力。
教学过程:
(–)故事引入。
教师:在我国古代流传着很多有趣的问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。
出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几只?(笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?)
师:我们今天就来学习——“鸡兔同笼”的问题。要解决这个问题,我们先从简单的问题入手。
(二)新授课程。
1、教学例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?
让学生以两人为一小组讨论。
汇报讨论的结果。
(1)列表:
鸡 8 7 6 5 4 3
兔 0 1 2 3 4 5
脚 16 18 20 22 24 26
(2)假设法:假设笼子里都是鸡,那么就有8×2=16只脚,这样就比题目多26-16=10(只)脚。
因为刚才是把兔子当成鸡,一只兔子少算两只,那么多出的10只脚就是兔子的只数10÷2=5(只)兔子
因此,鸡就有8-5=3(只)
(3)用方程解:
解;设鸡有x只,兔有(8-x)只。
根据鸡兔共有26只脚来列方程式
2x+(8-x)×4=26
2x+8×4x=26
32x-26=4x-2x
2x=6
x=3
8-3=5(只)
2,小结解题方法:
3,延伸与应用:
师:其实生活中有许多类似“鸡兔同笼”的问题,下面分
组研究这样一个问题:我们六年级38名少先队员划船活动,租了8条船,每条船都坐满人,大船能乘6人,小船能乘4人。这次活动租大船、小船个几条?(“做一做第2题”)
(学生分组或独立完成后汇报交流)
师: 经过大家的一番努力,这个“租船”问题转化成了一道‘‘鸡兔同笼”问题。
4,畅谈收获,全课结束。
师:今天的学习有趣吗?大家有哪些收获?
师:希望你们能用今天学到的方法去解决更多实际生活中的数学问题。
《鸡兔同笼》 篇6
数学新课程的重要原则是“以学生为本”,最终目的是促进学生全面发展,而“互动”则是达到此目的的重要方法或手段。我们知道,数学不仅仅要让学生学会计算、解决实际问题等,还要在课堂教学中引导学生有效互动,通过对知识的学习让学生的思维得到锻炼,从而掌握解题策略。
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。
由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同一问题中,学生的认知水平也有不同。解决《鸡兔同笼》问题,班上一小部分参加过奥数培
训的学生,接触过此种题型,他们可能会解决这类问题,但对大多数学生来说有一定的难度,所以在这节课当中,我决定主要借助小组合作探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。
出示题目后,引导学生弄懂题目给出的数学信息后,启发学生先独立动脑思考解决问题的办法,然后同桌交流,最后集体交流。学生想出列表法,假设法,列方程解三种方法,为了让全体学生都能掌握解决此类问题的方法,我重点引导学生交流用列表法,找到正确答案。师生共同经历了三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法后问,还有不同的方法吗?很自然地引出假设法和列方程解,由于学生有了前面列表的基础,有更多的学生能理解和掌握假设法和列方程解的方法。
老师在学生交流汇报的过程中,适时引导学生互相评价、互相补充,使各种方法在学生心中都能留下深刻印象,之后再让学生说一说,自己最喜欢的方法是什么,为什么喜欢?师生共同经历了三种不同的方法:逐一列表法、假设法、列方程三种方法,让学生自己选择喜欢的方法解决问题,自觉进行方法最优化。
这节课中,学生能够积极地思考,积极地合作,积极地探讨,充分地发挥了小组的作用,大部分学生学会了解决此类问题的策略,但教学中也存在着很多问题,反思如下:
1、学生汇报时,老师引导多了点,可以多找学生汇报,其他学生可能会听得更明白。
2、培养学生质疑能力,听不明白的及时向别人提问,及时解决不懂的问题。
3、没引导学生用画图的方法解决问题,是否少了从形象到抽象的过程。
4、学生比较喜欢假设法,但发现推理时思路不清,容易出错,如果及时指导学生写推导过程就会较好地避免问题的出现。
数学新课程的重要原则是“以学生为本”,最终目的是促进学生全面发展,而“互动”则是达到此目的的重要方法或手段。我们知道,数学不仅仅要让学生学会计算、解决实际问题等,还要在课堂教学中引导学生有效互动,通过对知识的学习让学生的思维得到锻炼,从而掌握解题策略。 “鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同一问题中,学生的认知水平也有不同。解决《鸡兔同笼》问题,班上一小部分参加过奥数培训的学生,接触过此种题型,他们可能会解决这类问题,但对大多数学生来说有一定的难度,所以在这节课当中,我决定主要借助小组合作探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。出示题目后,引导学生弄懂题目给出的数学信息后,启发学生先独立动脑思考解决问题的办法,然后同桌交流,最后集体交流。学生想出列表法,假设法,列方程解三种方法,为了让全体学生都能掌握解决此类问题的方法,我重点引导学生交流用列表法,找到正确答案。师生共同经历了三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法后问,还有不同的方法吗?很自然地引出假设法和列方程解,由于学生有了前面列表的基础,有更多的学生能理解和掌握假设法和列方程解的方法。老师在学生交流汇报的过程中,适时引导学生互相评价、互相补充,使各种方法在学生心中都能留下深刻印象,之后再让学生说一说,自己最喜欢的方法是什么,为什么喜欢?师生共同经历了三种不同的方法:逐一列表法、假设法、列方程三种方法,让学生自己选择喜欢的方法解决问题,自觉进行方法最优化。这节课中,学生能够积极地思考,积极地合作,积极地探讨,充分地发挥了小组的作用,大部分学生学会了解决此类问题的策略,但教学中也存在着很多问题,反思如下: 1、学生汇报时,老师引导多了点,可以多找学生汇报,其他学生可能会听得更明白。 2、培养学生质疑能力,听不明白的及时向别人提问,及时解决不懂的问题。 3、没引导学生用画图的方法解决问题,是否少了从形象到抽象的过程。 4、学生比较喜欢假设法,但发现推理时思路不清,容易出错,如果及时指导学生写推导过程就会较好地避免问题的出现。
《鸡兔同笼》 篇7
【学习目标】
1、尝试用不同的方法解决“鸡兔同笼”问题,并体会代数方法的一般性。
2、解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。
3、体会到数学问题在日常生活中的应用。
【学习重难点】
1、重点是尝试用不同的方法解决“鸡兔同笼”问题。
2、难点是在解决问题的过程中培养逻辑推理能力。
【学习过程】
一、故事引入
在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。
阅读书本P112鸡兔同笼的故事,能用你自己的话表述一下题目的意思吗?
二、探索新知
1、阅读P113例1,根据书本提示,会用列表法求出鸡、兔各几只吗?
(完成课本表格。)
2、假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?能列式解决吗?
(会用假设法解决“鸡兔同笼”问题)
3、自己动笔,尝试用方程的方法解决鸡兔只数的问题?
(有困难的可参考书本P114)
4、用假设或者解方程的方法解决P112“鸡兔同笼”问题
(1)方程解: (2)算术解:
解:设鸡有x只,那么兔就有(35-x)只。 解:假设都是鸡。
根据鸡兔共有94只脚来列方程式 2×35=70(只)
2x+(35-x)×4=94 94-70=24(只)
2x=46 24÷(4-2)=12(只)
x=23 35-12=23(只)
35-23=12(只) 答:鸡有23只,兔有12只。
答:鸡有23只,兔有12只。
5、以上三种解法,哪一种更方便?
☆友情小提示:
要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。
6、阅读P114阅读资料,了解下古人是怎样解决鸡兔同笼问题的。
三、知识应用:独立完成P115“做一做”,组长检查核对,提出质疑。
四、层级训练:1.巩固训练:完成P116练习二十六第1--5题。
2.拓展提高:练习二十六第6、7题。及P117“思考题”
五、总结梳理
回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)
自我展示台:(把你个性化的解答或创新思路写出来吧!)
《鸡兔同笼》 篇8
各位老师,大家好:有幸借这次机会和大家共同学习,相互交流。
今天我说课的内容是人教版义务教育课程标准实验教科书六年级数学上册第七单元数学广角第一课时112-115页。
数学课程标准指出:“综合与实践”是以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径,从而实现人人都能获得必须的数学。以此为理念,下面我从四个方面简要说说这节课。
一、说教材和教学目标
1.对教材的理解:鸡兔同笼问题设置在数学广角中,其教学与常规课有所不同。区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,初步培养学生有顺序地、全面地思考问题的意识,并培养学生的逻辑推理能力,为学生的终身发展奠定基础。教材借助我国古代趣题“鸡兔同笼”问题,通过应用和反思,加深对所用知识和方法的理解,了解所学知识之间的联系。
2.教学目标:基于以上对教材的分析和理解,我从知识与技能、过程与方法,情感、态度与价值观三个方面制订以下教学目标:
(1)了解“鸡兔同笼”问题,感受古代数学问题的趣味性。尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会假设法的逻辑推理性和代数方法的一般性。
(2)使学生在对自己解决实际问题过程的不断反思中,感受列表、假设、列方程等解题策略对于解决特定问题的价值,进一步发展学生的分析、综合和简单推理能力。
(3)使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心,进而让学生体会数学的价值。
根据教学目标和学生实际,我把尝试用不同的方法解决鸡兔同笼问题,并使学生体会各种方法解决此类问题的优劣作为本节课的教学重点。同时把理解数学知识与实际生活问题的联系,掌握利用数学方法解决实际问题的策略作为本节课学习的难点。
二、说教法、学法
在教学中我主要采用引导发现法和自主探究法,其次还采用小组讨论、合作交流等方法,以问题引领学生在知识探索的过程中体验学习的乐趣,感受数学的价值。从理解到分析比较、抽象概括和判断推理等数学思维方法是分析问题、探究规律的重要方法,并能运用到解决问题的过程中。
三、说教学过程及设计意图
鉴于数学广角这一特殊课型,我将本课分为复习铺垫、情境导入、尝试探究、应用练习、总结收获五个环节进行教学。在这五个环节的教学中,我把重点放在“尝试探究,解决问题”这一部分。目的在于使学生充分感受数学的思维过程,培养学生的有序思考和逻辑推理能力。
第一环节:复习铺垫,激趣引入
课件出示“鸡兔同笼” (3只兔,2只鸡)图片,观察图片找出数学信息和数量关系。
鸡的只数 + 兔的只数 = 总只数 鸡的脚数 + 兔的脚数 = 总脚数
【设计意图:引导学生有效提取素材中的数学信息,学会分析信息之间的数量关系,培养学生观察、发现、归纳的数学素养,为学习新知做好铺垫。】
第二环节:激发兴趣,情境导入
1.谈话:大约一千五百年前,我国古代数学名著《孙子算经》中记载了一道“鸡兔同笼”的数学趣题。
出示《孙子算经》中的鸡兔同笼问题,引导学生理解题意。
(1)引导学生将文言文翻译为白话文。
(2)学生自主找出数学信息和数学问题。
2. 揭示课题:这就是我们今天要研究的“鸡兔同笼” 问题(板书课题)。
【设计意图:介绍“孙子算经”,渗透数学文化,让学生感受到我国数学文化的源远流长,激发学习兴趣。】
第三环节:尝试探究,解决问题
(一) 化难为易,获得解决问题的策略
变换条件,出示例1:“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?”
(二)合作学习,探究解决问题的方法
学生猜测,说出猜测的依据。感受猜测的无序、零乱,并不科学从而进入到本节课的第二部分也是重点部分的教学:展开对鸡兔同笼问题解决方法的研究——
1. 列表法。引导学生有序的思考,出示表格。并确定猜想的范围:鸡的只数是8,有0只兔,总脚数有16只;鸡的只数是7,有1只兔,总脚数是18;计算依据还是数量关系,如果鸡有6只……由慢逐渐到快,由计算到直接报出结果,立即反问学生,你发现了什么规律?有些学生在填写时早就发现了规律,他们知道每一列都是依次地少1只鸡多1只兔,所以就依次多了两只脚。
【设计意图:列表法的教学,能培养学生有序、全面思考问题的意识。学习列表法后,引导学生发现:如果有些题目数据比较大,用列表法比较麻烦,不科学。既尊重学生的认知基础,又激发学生寻求更有效解决问题方法的兴趣。】
2.假设法、方程法解决问题。
(1)假设法。让学生充分交流解题的思路,深入理解算理。
教学假设法时,我是采用课件展示与学生讲解同步的方法,让学生直观形象的看到脚的变化过程,理解每一步的思考,说出每一步的意思,从而化解矛盾的症结。
如假设都是鸡时,比实际少了10只脚,是因为把一些兔也看成是鸡了,把一只兔看成一只鸡少算2只脚,那么把几只兔看成鸡时会少10只脚?计算方法是:10÷(4-2)=5(只兔),8-5=3(只鸡)
假设都是兔呢?由于有了第一种假设方法的经验,第二种假设方法我就放手给学生尝试、让学生说理。假设都是兔时,有32只脚,比实际多出了6只脚,是因为把一些鸡看成是兔了,把一只鸡看成一只兔多算2只脚,那么把几只鸡看成兔时会多算6只脚呢?推算得出有3只鸡。那么就有5只兔。
(2)方程法。分析列方程依据的数量关系,每一个分式的具体含义。
如解:设兔有X只,那么鸡有(8-X)只。鸡兔共有26只脚,就是:4X+2(8-X)=26
(2)解:设鸡有X只,那么兔有(8-X)只。鸡兔共有26只脚,就是:2X+4(8-X)=26
列方程解应用题,学生在五年级已学会。由于这种方法思路清晰,易于理解。因此只要明确等量关系,就能正确列出方程,只是设鸡有X只方程不易解。
【设计意图:激励学生产生新算法的愿望,充分利用学生已有知识经验和发现的内部规律去自主探究解决问题的办法。假设法解题适时演示,数形结合变抽象为形象,让学生经历“建模”的过程,帮助学生深刻理解数量关系及关键点,总结出解题的方法。最后又引导学生采用列方程的方法顺利的解决了鸡兔同笼问题。】
3.解决趣题,尝试应用。用你喜欢的方法解决古代趣题。
4.对比分析,方法优化。
(1)我们用了几种方法来解决这类题?你喜欢哪种方法?为什么?
列表法:有序思考,列举麻烦。
假设法:解答简便,推理复杂。
方程法:便于理解,过程复杂。
(2)假设法、方程法解题的异同。
假设法:假设鸡求兔,假设兔求鸡。
方程法:设鸡求鸡,设兔求兔(设兔解方程较容易)
5.阅读资料,理解古人假设法——抬腿法。
【设计意图:显然这三种思维并不在同一层次上,不在同一层次上的算法就应该提倡优化,而且必须优化,只是优化的过程应是学生不断体验与感悟的过程,而不是教师强制规定和主观臆断的过程,应让学生逐步找到适合自己的最优算法。】
第四环节:巩固应用,知识拓展
1.停车场有自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?
2.新星小学“环保卫士”小分队12人参加植树活动。男同学每人栽了5棵树,女同学每人栽了3棵树,一共栽了50棵树。男女同学各有几人?
【设计意图:应用练习是一个提升的过程, 在学生知识生长点上提出挑战性的问题,有利于学生识别题型培养迁移类推能力,发展思维,认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用。同时有效地评价更能激发学生热爱数学获得成就感。】
第五环节:总结评价,激励提高
学生总结谈收获。课堂要讲求实效性,既需要学生的广度参与,又需要学生情感与认知的深度参与,最后的总结收获才能验证是否实现较好的效果。
四、说教学反思
“鸡兔同笼”本来就是很抽象的课程,这种类型的课对教师是一种挑战,教师应努力把握住问题的本质,能够引导学生思考,同时,教师又应努力帮助学生整理清楚自己的思路,指导学生以不同的形式展示自己的成果或报告自己的工作。本节课我从学的角度安排教学过程、呈现学习内容、提供材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,课堂基本达到预期的教学效果,使学生的主体意识和探究精神得到培养,创新潜能得到开发,让学生获得了亲自参与探究学习的积极体验。结合本节课的备课和授课情况,我再补充四点个人想法:
1.学会把握解决问题的关键(思维连接点)。当学生遇到较为复杂的问题时,往往因不自信二乱了阵脚,因此掌握解题技巧就显得尤为重要。归根结底最重要的就是理解与简化信息,提炼数量关系,架起已知条件与所求问题的的桥梁,以获得问题结果或解决程序,逐渐积累数学经验,发展数学思维的过程。
2.方法优化、简化。解题方法的多样化虽好,但不是学生人人都能全部掌握,而是多数学生喜欢的方法,教师易教,学生易学的方法,对后续知识的掌握有价值的方法,才是最理想的基本算法,因此一定要对方法进行优化,让学生找到最适合自己的简单方法才是好方法。
3.认真书写,完整、准确过程的好习惯。想的再好,说的再有道理,最终还是要以书面形式表现出来,因此教师一定要给学生最好的示范和强调,让他们潜移默化的注重数学化的书写过程,既要完整、准确,又要简明扼要。
4.不断提升自我。总的来说,这堂课研究的方法多,容量大,好多地方只是蜻蜓点水,理解不深刻,练习不到位。部分学生对方法的掌握有依葫芦画瓢的现象。不过,对我来说通过对这堂课的研究,对新课程有了进一步的认识,感受颇深,收获较大。同时也能发现自身的不足,如课堂的驾驭能力和调控能力不够灵活,松弛度不够自然;对学生的评价不够准确、到位,激励性语言贫乏;语言还不够精准、风趣;对细节的把握还未发挥到最佳效果。
总之,知识是基础,方法是中介,思想才是本源。有了思想,知识与方法才能上升为智慧。数学是能够增长学生智慧的学科,我们只要抓住数学本质,与新课程理念有效结合,才能发挥数学教育的最大价值,凸显数学本色!这样做本身就是使数学课回归数学味,找回数学教学的灵魂!
我愿意与大家一起——继续不断地探索,与新课程共同成长!说的不到之处,请各位不吝赐教,多提宝贵意见,谢谢。
鸡兔同笼课件
( 一)直入课题
1、课前出示课题:
师:“鸡兔同笼”是什么意思?
生:
师:你真聪明,回答正确,。是的,这是这是大约一千五百年前,我国古代数学名著《孙子算经》中记载的一道数学趣题。
原题是这样的:
今有雉兔同笼,上有三十五头
下有九十四足,问雉兔各几何
师:这几句话是什么意思知道吗?(生:知道)
“雉”是什么意思?(鸡)
2、把它翻译成现在的话是这样子的:(ppt出示,学生齐读)
(二)探究算法
1、师:鸡和兔各有几只,会算吗?会的举手,好把手放下,还有这么多不会的,不会不要紧,咱们先来猜一猜。
老师想先来猜一个可以吗?鸡18只。兔20只,行不?(为什么?)
生:
师:是的,讲的真好。
师:谁还想来猜一下(学生猜测,师随机板书)
请同学们想一想,鸡和兔共有多少种可能?
这些可能都是正确的吗?(不是)
那怎样验证哪些可能是正确的?
生:通过计算对比腿的只数
这样验证下去能不能找到正确的答案?(能)
2、师:但是要验证这么多,真是太耗费时间了。我们可以先从简单地问题入手(出示例1)(化繁为简是不是需要出现)
师:同学们认真观察,这里什么发生了变化?(数变小了)
3、活动:同学们拿出老师课前给你们准备的表格,先猜一猜,填一填吧。
学生汇报:预设学生的几种思路(课前渗透,若没有出现则师举例说明)
(1)直接想到鸡有3只,兔有5只
(2)从鸡有6只,兔有2只开始推算
(3)从鸡有8只,兔有0只开始推算
调整方案有两种: 一种是一个一个的调整:总结规律:每增加一只兔,减少一只鸡,脚的总数增加2只:反之,则减少两只(让学生必须领会透)
另一种是 多个调整:
师:像你们刚才这样,根据鸡和兔的总只数,列举出一些可能,通过验证和调整,总能找到一种情况符合题目要求。这种方法可以叫做
列表法(板书)
4、学习假设法
(4)师:在刚才的列表法里边,我们从鸡有8只,兔有0只开始推算,也就是假设笼子里全都是鸡。这个时候我们应该怎么计算?
(学生先在练习本上计算,再汇报思路)
8x2=16(只)
26-16=10只
10/2=5(只)
师:把所的有只数都假设成鸡,算出腿的总条数再和实际的条数比较一下,通过分析和计算,得出问题的答案。这种方法可以叫作假设法。(板书)
5、师:同学们刚才的这两种方法,你觉得哪种最简单,或者说你最欣赏哪种方法?
生:
师:刚才我们用列表法和假设法解决了这个问题。你们能用我们刚才的方法解决我们前面的那个《鸡兔同笼》的问题吗?
学生动手计算,汇报解题思路,
6、师:同学们请想一下,我们刚才是把笼子里的鸡兔都假设成鸡,除了这种假设,我们还可以怎么假设呢?
生:(都假设成兔)
学生自己动手计算解决问题,汇报
(三)回顾总结
师:这节课我们研究了什么问题?
生:
师:解决这个问题的方法有哪些?
生:
《鸡兔同笼》 篇9
《鸡兔同笼》说课稿
尊敬的各位评委,各位老师:
大家好!
我所说课的内容是北师大版五年级上“尝试与猜测”的第一课时《鸡兔同笼》,教材安排了此类应用题,且把它归类于尝试与猜测这个大课题之下,其用意就是要学生通过对日常生活中的现象进行观察与思考,并从中发现一些特殊的规律。教材借助于“鸡兔同笼”这个载体,让学生经历列表,尝试和不断调整数据的过程。从中体会解决问题的一般策略——列表。
围绕“鸡兔同笼”使学生展开讨论,应用假设的数学思想 ,从多角度思考,运用多种方法解题,学生可以应用逐一尝试法,跳跃尝试法,取中尝试法等来解决问题。
学生在三年级时学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一尝试法列表解决问题。本班的学生思维活跃,敢想敢说,有一定的小组合作经验。
基于以上认识,我确立了本节课的教学目标:
知识目标:在解决“鸡兔同笼”的活动中,通过列表举例,尝试计算等方法解决鸡兔的数量问题。
能力目标:培养学生的合作意识,在现实情境中,使学生感受到数学思想的运用和解决问题的关系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
情感目标:了解我国古代数学的光辉成就,增强民族自豪感; 提高学生对数学的好奇心和求知欲;增强学数学的自信心。
教学重点:探索列表枚举的不同的方法,找到解决问题的策略。
教学难点:在自主探索过程中,掌握利用数据 比较、判断、调整的方法。
突破点 :发现规律,确定猜测范围。
教学过程中我将游戏导入立足于学生的生活经验和知识背景,新授部分围绕着“自主参与---合作学习----深刻体会”让学生开展学习活动。我将教学过程分为以下四个部分:
一 游戏导入,在学生的头脑中有个初步的鸡兔腿数的计算意识。
二 新授部分,通过观察主题图,确定数学信息,根据要求填写表格。汇报三张表格的填写过程,以及所运用的尝试方法的各自优势所在。
三迁移练习,综合应用。
四课堂总结及情感目标延伸。
课堂教学实施过程:
一游戏导入。
初步计算鸡兔的总腿数。“今天我们来玩个接数游戏,请你仔细听,然后大家一起接数。一只小鸡一只兔,两个头六条腿。两只小鸡两只兔,四个头十二条腿。。。。。。”目的是在学生头脑中对鸡兔的头,腿的总数有个初步映像。在这里利用了生活资源调动学生的已有的知识背景来参加这个活动,使其产生了浓厚的兴趣。同时游戏导入也起到了引题的作用。此时介绍我国古代数学名著《孙子算经》,让学生了解我国古代数学的光辉成就,渗透德育教育。
二新授部分
1(课件)出示主题图。让学生根据数学信息,结合刚才的游戏去猜鸡兔各有多少只?学生猜测的数据都能符合鸡兔有20个头这个条件。要想验证数据是否正确,就是要看腿的总数是否符合题上的条件54条。
2于是,安排了学生自己列表填数来解决问题。在这个过程中,如何凭自己的猜测来调整数据就显得尤为重要。猜测是要学生根据自己的知识背景和生活经验。让学生分组合作讨论。因为已经有了导入的铺垫所以在这个环节我没有给与更多的提示。
3展示学生的表格与书本相似的。我先把问题抛给学生:现在老师给大家一点时间,请你仔细看看这三张表格是怎样填数的。小组再一次合作交流。
关于第一张表格,原来的1只鸡,19只兔,78条腿。经过了13次计算得到正确答案。而个别学生用19只鸡,1只兔,腿是42条。经过了7次计算得到答案。学生对这种做法解释说:兔的腿比鸡的腿多得多,所以我从大量的鸡开始试数。这充分体现了新课标提出的要求:让学生借助已有的生活经验解决日常生活中存在的问题。总结制表方法:逐一尝试法
第二张表格是学生自己汇报完成。强调跳跃尝试法的制表过程。它有很多种呈现方式。可以从2只鸡,18只兔开始。每次增加2只鸡。或者是每次增加不同数量的鸡的只数。
第三张表格,老师和学生共同完成。这种方法对于一些思维活跃的学生是一次提升的过程。总结制表方法:取中尝试法。
三迁移练习,综合应用。
我把教材的练习题部分改动。因为本课主要不是为了解决“鸡兔同笼”问题本身,而是借助这个载体解决与之类似的问题。
第一题是为了巩固本课的新知。
第二题的答案有两个,在学生找到第一个答案的时候。引导学生继续举例。这说明了数学答案的不唯一性,要求学生有严谨的学习态度。
四课堂总结及情感目标延伸
1总结列表是解决一般问题的策略,以及列表的三种方法。
2根据时间灵活安排《孙子算经》中是如何解答“鸡兔同笼”问题的呢?(课件)
五反思教学效果
深入浅出的教学过程让学生体会到了列表不仅可以解决鸡兔同笼的问题,还可以解决生活中的问题。新课标指出数学来源于生活更要应用于生活。
本节课能够顺利完成,那是因为学生的合作交流得到了充分的发挥。让学生学会讨论,合作交流。讨论会使学生成为知识的共同创造者!
以上就是我的反思性说课。这是我第一次参加这种形式的比赛。感谢一直帮助我的网友,老师。我的课不一定成功,但这次非比寻常的经历却让我成功的学到了很多知识。
尝试与猜测(鸡兔同笼)教学设计第二稿
哈市松北区万宝中心校 车成超
教材分析
本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一尝试法,跳跃尝试法,取中尝试法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
学情分析
在此之前,学生已经在三年级时学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一尝试列表解决问题。本班的学生思维活跃,敢想敢说,有一定的小组合作经验。
教学目标
知识目标:在解决“鸡兔同笼”的活动中,通过列表举例,尝试计算等方法解决鸡兔的数量问题。
能力目标:培养学生的合作意识,在现实情境中,使学生感受到数学思想的运用和解决问题的关系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
情感目标:了解我国古代数学的光辉成就,增强民族自豪感; 提高学生对数学的好奇心和求知欲;增强学数学的自信心。
教学重点:探索列表枚举的不同的方法,找到解决问题的策略。
教学难点:在自主探索过程中,掌握利用数据 比较、判断、调整的方法。
突破点 :发现规律,确定猜测范围。
针对本节课的教学目标及重、难点,根据五年级学生的认知水平,本节课的教学思路是
一 游戏导入,在学生的头脑中有个初步的鸡兔腿数的计算意识。
二 通过观察主题图,确定数学息,根据要求填写表格。
三汇报三张表格的填写过程,以及所运用的尝试方法的各自优势所在。
(一) 游戏导入,初步计算鸡兔腿数。
师:同学们,我们来玩一个接数游戏好吗?要求事请你仔细听,咱们大家一起数下去。
一只小鸡,一只兔,两个头,六条腿。
两只小鸡,两只兔,四个头,十二条腿。
三只小鸡,三只兔,六个头,十八条腿。
四只小鸡,四只兔,八个头,二十四条腿。
五只小鸡,五只兔,十个头,三十条腿。
师:同学们数得很准确。原来在动物身上有许多数学信息是值得研究的数学问题。如在我国古代数学名著《孙子算经》中有这样一个题目:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?就是研究鸡兔同笼的问题。今天我们就来学习有关鸡兔同笼问题的应用题。(板题)
二自主探索,发现新知。
1(课件)
师:从图中你能知道哪些数学信息? (有鸡、兔,20个头,54条腿)
现在同学们就来猜一猜鸡兔各有多少只?(可以根据我们刚才玩的游戏)
师:把你猜想的结果跟你的同桌交流交流。
生1:鸡7只,兔13只。
师:他的答案是否正确呢?我们就来验证一下。
腿:14+52=66条
师:与条件中的54条比怎么样啦?(多了)说明什么问题?兔子多了鸡少了,那该怎么办呢?
生2:猜测鸡是15只,兔是5只 ,腿50条。
师:总腿数少了4条,怎么办?请同学们用老师发的这张表格完成你的猜想。
(展示学生的表格与书本相似的)
现在老师给大家一点时间,看看这三张表格是怎样解决这个问题的?5分钟
师:现在我们就来具体看看这三张表格。
1课件出示:第一张表格
师:谁来解释一下第一栏的过个数字各代表什么意思?
谁来说说第二栏的各数的意思?
师:你们认为第一张表是按照什么样的顺序来找到正确答案的?
(第一张表,它是先假设鸡有一只,则兔子有 19 只,看腿的总数是不是 54 条,腿多了,说明兔子多了,然后依次增加一只鸡,减少一只兔,就这样依次的用一只鸡换一只兔,再算腿的总数符不符合条件,直到找到正确答案为止。最后经过了 13 次计算,终于找到了答案。)
师:我们给这种列表方法取个名字叫“逐一尝试法”
师:孩子们请你们再观察表,当把一只兔换成一只鸡时,总的腿数会有什么变化?为什么?
小结:从表中我们可以看出每减少一只兔增加一只鸡,腿的总数都减少 2 只。
下面我们来看第二张表
2 、课件出示第二张表:
师:谁愿意说说第二张表格的列表过程?
生:当假设只有 1 只鸡, 19 兔时,总腿数与条件中的 54 条相差太远,由此判断兔子的只数太多了,所以可以把鸡与兔多换一些
第一次换了4 只鸡,总腿数减少8条。第二次又换了5只鸡,总腿数减少10条。于是又换了5只鸡,总腿数是50条。由此可以判断兔的只数应该在5和10之间。接下来又增加1只兔,2只兔,得到正确答案13只鸡,7只兔。
师:我们给这种列表方法也取个名字叫“跳跃尝试法”。
3 、课件出示第三张表
师:谁来解释一下第三张表是如何来解决这个问题的?
生:先是假设兔子数和鸡的只数各一半,发现总腿数偏多,于是肯定兔的只数多了,应该减少兔子的只数来增加鸡的只数。
师:我们给这种列表方法取个名字叫“取中尝试法”
师:看完了这三张表,你能不能说说这三“逐一尝试法,跳跃尝试法和取中尝试法”在列表解决这个问题时有什么不一样的地方?)
师小结:逐一尝试法:优点是能够引导大家发现规律,而且答案不会遗漏。
跳跃尝试法:优点是尝试的范围缩小了一半。
取中尝试法:需要不断调整,思维价值大。
三作业布置,巩固提高。
1、 停车场里有三轮车和自行车共22辆,有59个轮子,自行车、三轮车各几辆?
2、 用大小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?
四全课总结
在这节有趣的数学课上,你学到了什么知识?
(灵活安排)介绍《孙子算经》:《孙子算经》中是如何解答“鸡兔同笼”问题的呢?(课件)
《鸡兔同笼》 篇10
学生已经具备了一元一次方程解决实际问题的经验基础,因此学生应能力经过自主探究和交流列出二元一次方程组,解决简单的实际问题。本节教材通过传统问题进行列二元一次方程组解决实际问题的训练。一方面,在列方程组的'建模过程中强化方程的模型思想,培养了学生列方程解决现实问题的意识和能力,另一方面,将解方程组的技能训练与实际问题的解决融为一体,在实际问题的解决过程中提高学生的解题技能。强化了学生二元一次方程的基本方法,从而渗透了学生的化归思想,即二元一次方程组,其本质解决就是“消元”,化未知为已知:
1、优点:
教学方式由传统的讲学模式转变为小组合作探究,师生合作补充完善的高效课堂,使教学变得活泼、生动,借助多媒体辅助教学激发了学生的好奇心与学习兴趣,以学生为中心,提高了课堂效率。
2、不足:
本节课在交流探讨环节中,老师不能照顾到每个学生,给本节课留下了一点小遗憾。
3、改进方法:
在课后与学生探讨交流,辅导在课堂上对知识还有点模糊的学生,尽量让每个学生都有和老师交流的机会,提高学生的学习兴趣。
《鸡兔同笼》 篇11
对于课本上的“鸡兔同笼”问题,说实话,我有种怕的感觉,为什么会这样说呢?在人教版教材中,这一问题都是以提高题出现,而不是作为课文正文出现的,这样,在数学兴趣班上,我就讲述过此类问题,但效果很是不好,除了部分同学听得津津有味,大多数的同学都像是在“知识的迷雾” 里遨游。鉴于此类情况,除了找学生的原因,我也在深深的反思自己的教学,是不是讲解时不得要领,还是讲解得过于深奥,亦或是老师本身就对此类问题了解得就不深不透?
如此种种,让我心有余忌,怎么办,要想有个好的心态去教学,只有去“加油”去“充电”了,要想让学生听得明白,首先自己要有充足的知识储备量,这样才能讲得清楚。于是先后拜读了任老师的“兔子不站起来怎么办?”,《数学课外读物》上的“鸡兔同笼”,《数学奥数优化教程》上的“鸡兔同笼”章节,还参阅了多篇教学设计。
终于到了我的这一节课“横空出世”了,,可能是学生预习了的原因,学生的课上表现让我有点“受宠若惊”,大大超出我的想象。
在此节课中,对于课文出现的例题(鸡兔同笼,有20个头,54条腿,鸡,兔各有多少只?)学生的想法有多种,下面是我的一一总结。
第一类:列表举例法。
方法1:根据鸡和兔共20只的条件,假设鸡只有1只,那么兔有19只,腿共有78条。。。在这样的逐一举例中,直至寻求到所求的答案。
方法2:先作一些分析,比较后再试。
方法3:先假设鸡和兔各占一半,再列表。
60>54,说明兔子多了,应减少兔子数。
【课堂随思】:
【上面三种方法中,第一张表格是常规的逐一列举法,即根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条;假设鸡有2只,那么兔就有18只,腿共有76条。。。,再这样的逐一举例中,直至找到所求的答案。经过课堂调查此种方法被我们班上31个学生所采用,看样子这种方法是能被大多数学生所能理解的一种方法。第二张表格是估计鸡与兔数量的可能范围,以减少举例的次数。第三张表格是采用取中列举的方法,由于鸡和兔共20只,所以各取 10只,接着在举例中根据实际数据的情况确定举例的方向,这样可以大大缩小举例的范围。】
第二类:作图分析法。
方法1:先画20个圆圈表示20个头。再为每个动物画两条腿,20只动物只用完40条腿,还多出了14条腿。把剩下的14条腿用完,要给其中的7只动物加2条腿,这7只就是兔子,另外的13只就是鸡。
方法2:先画20个头,接着假设全部是兔,共画80条腿,多出了26条腿,要给其中的13只动物去掉2条腿,这13只就是鸡,另外的7只就是兔了。
【课堂随思】:
【此种作图法,只有几个学生想到,但此法在班上进行展示后,得到了不少同学的喜爱,主要是因为它能直观形象的展示出解题方案。】
第三类:方程解答法。
解法1:设其中有x只兔,有y只鸡。列式为:x+y=20 ,4x+2y=54。
最后算出x=7,y=13。
【课堂随思】:
【此二元一次方程组由我班曹琪同学当堂提出,着实吓了我一跳,我为我的学生这种超前的数学学习的精神所折服,因为他不但会列式还能有板有眼的做出来。我在课堂上适时的表扬了他。在不少学生的数学日记里都流露了对曹琪的佩服之情,还有部分同学说对此种解法根本看不懂。这种方法可当作是课堂上的一种思维火花,要好好呵护,但不可强行全面推行。】
解法2:设其中有x只兔,有(20-x)只鸡。列式为:2x+4x(20-x)=54,最后算出x=7,得出兔的只数是7只,那么20-x=13就是鸡的只数。
【课堂随思】:
【此种一元一次方程法被班上7,8个同学所采用,因为五年级的学生有了一定的方程知识的基础,所以能理解的也有一些学生,但因为对于方程,学生运用并不熟练,所以采用此种方法人数不多】
第四类:假设推理法。
方法1:
假设这20只全部是兔子,那么就应该有80条腿,而题目只告诉我们有54条腿,我们算的80与实际相比多算了26条腿,这是为什么呢?因为一只鸡是两条腿,而我们把它当成四条腿算了,如果用一只鸡来换一只兔,就要减少2条腿,也就是我们把多少只鸡当成了兔子,显然26÷2=13(只),所以鸡有13只,兔子有7只。可以列式为:(20x4-54)÷(4-2)=13(只),20-13=7(只)。
方法2:
假设这20只全部是鸡,那么就应该有40条腿,比实际少了14条腿,是因为每只兔子少算了2条腿,这样共有兔子是7只,鸡则是13只。列式如下:(54-20x4)÷(4-2)=13(只),20-13=7(只)。
【课堂随思】:
【解决鸡兔同笼问题通常使用假设法,可以假设所有的动物都是兔子,并求出在假设情况下的总腿数,再把实际的腿数和假设情况下的腿数相比较,看看多出了多少,每多2只腿说明有一只鸡,将多出的腿数除以2就算出共有多少只鸡。也可以假设全部是兔子来解。但这种“通常法”理解起来并不容易,我都琢磨了好几回才能很好的表达清楚,调查学生采用此法的人数也是寥寥无几。对于会使用此做法的同学在课堂上我进行了鼓励,对理解不透的也进行了灵活机动的处理,课后可向老师请教,也可和其他同学商讨,在课堂上不作统一要求。真正体现出:数学课堂上不同的人有不同的发展,不同的人学有不同的数学。】
方法3:
把一只鸡和一只兔看做一个整体,一个整体中就有(4+2=6)条腿,54条腿应该是几个这样的整体呢?54÷6=9(个),在9个这样的整体里兔子的只数应该不是9只,因为9只兔和11只鸡的腿的条数超过了总条数54。那么就把兔看成8只,还是偏大,最后把兔的只数看成7只,鸡是13只,腿的总条数就正好是54了。列式为:4+2=6(只),54÷6=9(个),9-1=8(只),9-2=7(只),20-7=13(只),7x4=28(条),13x2=26(条)28+26=54(条)
【课堂随思】:
【此种想法是我班何洪甚同学思考出的,说实在的,在他读自己的算式时,我还未完全理解他的意思,但经过他的解释说明,不但我豁然开朗,就连班上平时很不开窍的学生也在微微点头,这种方法中,算式的简便易行,方法的独特新颖,得到了大家不约而同的阵阵掌声。我也在深深的感叹:弟子不必不如师呀,要想“学高为师”,教师学习的步伐要一刻都不能停息呢!】
第五类:“金鸡独立”法
此方法是:每只鸡都用一只脚站着,而每只兔子都用后脚站起来”。
显然,在这种情况下,总脚数出现了一半,是27,此时,鸡的脚数与鸡的头数是相等的,兔子的脚数是兔子的头数的2倍。所以,从27中减去总的头数20得7,就是兔子的头数。当然,20-7=13,鸡就是13只了。
【课堂随思】:
【学习了学生的众多思考,就有学生想考我:老师,你说一个方法呀。此时其实已不便多说方法,因为这样会给学生造成疲乏和厌倦,为减少负面作用,我就来个有趣点的吧,我清了清嗓子,说:下面老师所说的是“金鸡独立”法,学生都来劲了,听得津津有味,连说:老师真聪明。此法虽是从别处学来的,但我的传授能给学生带来快乐和知识,我也很高兴。下课铃声已铛铛敲响,学生的脸上还写着意犹未尽。】
鸡兔同笼问题早在我国古代数学名著《孙子算经》中就出现过,社会发展到今天,鸡和兔同装一笼的此类事件应该不多见了。但我们可以借助“鸡兔同笼”这个载体让学生经历尝试和不断创新的过程,在尝试中学习,在学习中尝试;善学,乐学.最终达到学好数学的目的。
《鸡兔同笼》 篇12
教学目标:
1、了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
2、让学生在自主探索、尝试、合作学习的'过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的一般性。
3、了解我国古人解鸡兔同笼问题的方法,感受其趣味性。
教学重点:
尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。
教学难点:
在解决问题的过程中,培养学生的逻辑思维能力。
教法:分析、引导
学法:自主探究
课前准备:
多媒体。
教学过程:
一、定向导学:2分钟
1、师:同学们,你们知道吗,大约在1500年前,我国古代的数学名著《孙子算经》中,记载着一道有趣的数学题:(课件出示,题略)你们知道这道题的意思吗?
生:……(课件演示)
师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。
2、学习目标:
掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
二、自主探究:8分钟
《鸡兔同笼》 篇13
34、不封闭栽树问题:
(1)一条路的一边两端都栽树=路长÷间隔+1;
已知间隔数,树的棵树,求路长。路长=间隔数×(树的棵树-1)
(2)一条路的两边两端都栽树=(路长÷间隔+1)×2
(3)一条路的一边两端不栽树=路长÷间隔-1
(4)一条路的两边两端不栽树=(路长÷间隔-1)×2
(5)锯木头时间问题:锯一段木头时间=总时间÷(段数-1)
35、封闭图形四周栽树问题:栽树棵树=周长÷间隔
36、鸡兔同笼问题:(龟鹤问题、大船小船问题)
(1)算术假设法1:假设几只都是兔子,(都是脚多的兔子),先求鸡的只数
鸡的只数:(总头数×4-总脚数)÷(4-2即一只兔的脚数减去一只鸡的脚数)
兔的只数:总头数-鸡的只数
算术假设法2:假设几只都是鸡,(都是脚少的鸡),先求兔子的只数
兔子的只数:(总脚数-总头数×2)÷(4-2即一只兔的脚数减去一只鸡的脚数)
鸡的只数:总头数-兔子的只数
(2)方程法:设兔子有x只,则兔子脚有2x只。那么鸡有(总头数-x)只
根据“兔子脚+鸡脚=总脚数”列方程解答先求兔子只数,再算出鸡的只数。
即:4x+2×(总头数-x)=总脚数
解 4x+2×总头数-2x
=总脚数
4x-2x+2×总头数-2×总头数=总脚数-2×总头数
2x=
x=
《鸡兔同笼》 篇14
俗话说:“旁观者清,当局者迷”,以旁人的眼光来审视自己的教学实践,能使自己对问题有更明确的认识,并获得对问题解决的广泛途径。下面是鸡兔同笼教学反思范文,仅供参考!
鸡兔同笼教学反思
本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。让学生获得亲自参与探究学习的积极体验。
按照我对教材的理解,并遵照《新课程标准》中:在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流的精神。首先以观察鸡兔的图片入手,让同学们发现动物身上隐藏着许多的数学问题,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点;接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的去阅读书中的一段阅读资料,了解古人的解题方法,并试着解释。老师再利用多媒体课件帮助学生理解古人这种独到的解题方法--------抬腿法。从而让学生受到古文化的熏陶,感受道古人的了不起。最后就是利用法学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。
“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材第十一册中。对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。特别是用假设法解答,学生理解起来很难,为此我用画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。这样把抽象的知识直观化了,学生很快理解了这种方法。
我注重从以下几个方面进行数学文化的渗透:
一、介绍中国古代的数学成就。
中国有着历史悠久、成就辉煌的数学文化,出现了许多伟大的数学家和经典的数学名著。结合本节课的教学内容,教师通过向学生介绍记载“鸡兔同笼”问题的数学名著《孙子算经》,介绍古人解决鸡兔同笼问题的巧妙方法,使学生了解数学知识丰富的历史渊源,感受古人的聪明智慧,增强民族的自豪感。
二、渗透解决问题的思想方法。
数学思想方法是数学文化的精髓,教师有意识地向学生渗透一些基本的数学思想方法,可以加深学生对数学知识的理解,提高学生的思维品质。结合本节课的数学内容,教师适当渗透了化繁为简、猜测验证、假设、数形结合等思想方法,其目的不仅是让学生掌握好本节课的基础知识和基本技能,更重要的让学生了解一些解决问题的策略,提高解决问题的能力。
三、注重数学模型的实际应用。
在数学教学中,从学生已有的生活经验出发,让学生亲身经历讲实际问题抽象成数学模型并进行解释与应用的过程,能激发学生的兴趣,让他们全身心地投入学习。结合本节课的教学内容,教师安排了大量与“鸡兔同笼”有着类似数量关系的问题,让学生会用数学的思维方式去观察、分析周围世界,并且在这现实的、有意义的,富有挑战性的探索活动中,加深对数学知识的理解与掌握,感受到数学的真谛与价值。
但在平时的教学中也存在值得我们进一步思考的问题:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;
2、要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;
3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。
《鸡兔同笼》 篇15
时间:20xx年12月3日
地点:大会议室
主备人:崔
参加人员:六年级全体数学教师
教研内容:“鸡兔同笼”问题
教学目标:
1.初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。
2.结合图解法理解假设的方法解决鸡兔同笼问题。
3.在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
教学重点:能用列表法和画图法解决相关的实际问题。
教学难点:结合图解法理解假设的方法解决鸡兔同笼问题。
重难点突破:借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地 引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的过程形成此类问题的一般性策略。
模式方法:提出问题——列举尝试——观察发现——讨论交流——寻找解法。
作业设计:有浅入深“鸡兔同笼”的基本题型多练。
组内教师讨论要点:
1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。
2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的基础,是重要教学内容之一,从中体会数量的变化规律。
3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。
4、列方程解时要借助实例,体会设x的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为x的道理,方法是设出一部分,根据总数列出方程(易列难解)
活动总结:
全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。
《鸡兔同笼》 篇16
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。在北师大版教材数学五年级上册的尝试与猜测中安排了《鸡兔同笼》这一教学内容,从读懂教材这一角度来看,在本课教材中呈现了3种解决问题的方法,都是通过假设举例与列表的方法,寻找解决问题的结果。其中,第一张表格是常规的逐一举例法,第二张运用了跳跃列表法,第三张运用了中列举法。课堂上学生可能会想出画图的方法,方程法等各种方法。但需要注意的是,教材选“鸡兔同笼”这个题材,主要并不是为了解决“鸡兔同笼”这个问题本身,而是要借助“鸡兔同笼”这个载体让学生经历列表,让学生在大胆的猜测、尝试和不断调整的过程中,体会出解决问题的一般策略——列表。而且在后面相应的练习、复习中,相关的题目也都附上了表格,能够让学生较好地运用这种基本的解题策略解题。教学参考中明确指出,教师不宜补充其他解法,以免分散学生的注意力,影响学生对列表方法这一常用数学方法的掌握,更不应要求学生直接套用公式解题。同时,我们对《鸡兔同笼》问题在各种版本中不同的安排也进行了对比研究,比如,在人教版教材中,这一课时安排在六年级,它的教学目标是让学生通过不同方法研究解决鸡兔同笼问题,使学生理解并掌握鸡兔同笼问题的解题方法;而在苏教版中,这一课时是作为四年级的教学内容,一方面是为了培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。针对不同教材,认真领会编者意图的基础上,我们再次对学生进行了认真细致的研读。
说学生:
学生已经具备了应用逐一尝试法列表解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面需进一步培养。
说教学目标:
基于对教材理解的和分析,结合学生的知识经验和生活经验,遵循课程标准精神,我确定了以下教学目标与重难点。
知识目标:本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
能力目标:在“鸡兔同笼”的活动中,通过列表枚举方法,解决鸡兔的数量问题。
情感目标:理解数学知识与实际生活问题的联系,让学生感受到我国数学文化的源远流长,激发学生的学习热情。
重点:明确鸡兔同笼问题中的数量关系,并会运用列表的方法解决生活中的实际问题。
难点:理解数学知识与实际生活问题的联系,掌握利用列表的方法解决实际问题的策略,能够准确的计算。
说教具:
本课时我结合自己的教学设计,制作了课件,为了便于学习,我为为学生准备了两份表格。
说教法、学法:
在教学中我主要采用引导发现法、小组合作法、讨论法、交流等方法,并引导学生进行科学的归纳、总结,以问题引领学生进行尝试、探究、调整、交流等等。使学生在知识探索的过程中体验学习的乐趣,感受数学的价值。
说教学过程:
1、课前我和学生做了一个“猜数”的小游戏,重现学生的实际生活经验,减少学生对于不同列举法的陌生感,为学习各种不同的枚举方法铺垫基础,初步感受中列举的科学性。
2、情景引入
在开课时,我借用兔和鸡这两种学生十分熟悉的动物引入课题,同时借用多媒体出示:你知道吗?说明:这就是1500多年前我国数学史上著名的数学问题——鸡兔同笼问题。同时揭示课题:鸡兔同笼。这一环节的设计,目的是为了给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。
3、尝试、探究
接着我让学生先小组讨论,采用不同的方法解决鸡兔同笼的问题,在这里我只要求学生说出解决的思路即可。紧接着的新授部分,我让学生大胆的进行猜测、尝试与调整,并引导学生观察,探究、归纳各种不同列表法的优劣所在,并重点介绍中列举法。
4、巩固,运用新知解决生活中的实际问题
在这一环节,我又重点让学生分析生活中的实际问题与鸡兔同笼相类似的地方,明确鸡兔同笼问题中的数量关系,构建这一数学模型,帮助学生学会灵活运用列表的策略,并能够找到解决问题的最佳方法。
5、课堂延伸
我让学生课外继续探讨《孙子算经》中的鸡兔同笼问题作为这一课的课堂延伸,既使整堂课前后照应,又使学生的学习从课内延伸到课外。
教学反思
反思这堂课的教学,从整体上来讲我认为还是比较成功的,具体体现在:1、我在认真研读教材、研究学生的基础上,领会了编者的意图,通过在本校几个班的教学实践,学生对列表法的基本方法,以及调试的技巧都掌握得很好;2、对鸡兔同笼这一数学模型的构建学生掌握很好,在解决问题过程中对怎样的问题适合运用列表法能够一目了然,并能选择科学、合理的方法加以解决。3、但对这节课教学本身也有自己的思考,因为《鸡兔同笼》问题本身是我国的千古趣题,解决这个问题的方法远远不止列表法一种,而在教学这一课时,学生虽然能够运用多种方法解决,但由于时间有限,我未能逐一进行讲解,这是否会限止学生的思维呢?所以我不仅在课堂上让学生以小组讨论的形势进行探讨,在结课的时候,我又提示学生早在1500多年前我国的数学名著《孙子算经》中就有所研究和记载,迄今为止,中外许多数学家都很关注鸡兔同笼的问题,并且已经研究出许多解决的方法,希望同学们课外继续研究!以引导学生课外进一步研究“鸡兔同笼”的问题。并且我也带领学生继续探究,同学们也非常有兴趣,探究出了许多方法,比如化归法、破头法、砍足法、金鸡独立法等等,名字都取得五花八门呢,我不知道我这样的设计是否科学、合理,敬请指点。
《鸡兔同笼》 篇17
一、说教材
《课标》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识 。
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在古代数学名著《孙子算经》。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。本课的教学与其它解决问题的课的区别在于,要把数学思想方法贯穿始终,为学生的终身发展奠定基础。
编排特点:
1. 注重彰显数学的文化价值,激发学生的学习兴趣。
2. 注重体现解决“鸡兔同笼”问题的不同思路和方法。
教材从数据较小的问题入手,让学生尝试解决。体现了学生从猜测到用“假设法”和列方程的方法解决问题的探究过程,同时也表达了解决“鸡兔同笼”问题的不同思路和方法。同时感受古人巧妙的解题思路。
3. 拓宽对“鸡兔同笼”问题的认识,明确其在生活中的应用。
二、说学生
鸡兔同笼”问题,思维难度大,学生难以理解,特别是对于那些智力水平属于中下的学生来说更是不易。但是有一些学生在课外书中或在奥数班里已经学习了相关的内容。因此,教学这一内容时,学生的程度会参差不齐,而一部分学生对于解方程的基本功比较差,有一定难度。三班的学生思维不够灵活,学习起来会有难度,四班的学生思维活跃,敢想,但很多学生不敢说,有一定的小组合组经验和合作能力,教学效果会好于三班。
三、说教学目标
基于以上认识,我确定本课的教学目标为:
1、学生初步认识“鸡兔同笼”的数学趣题,感受古代数学问题的趣味性,学习我国传统的数学文化。
2、尝试用不同的方法解决“鸡兔同笼”问题,并能解决与之有关的实际问题。
3、在解决问题的过程中培养学生的逻辑思维能力。
教学重点:尝试用不同的方法解决“鸡兔同笼”问题,并体会各种方法解决此问题的优劣。
教学难点:在解决问题的过程中培养学生的逻辑思维能力。
四、说教法与学法。
我本着“让学生经历猜想、实验、推理等数学探索的过程”的目的,坚持“学生是学习的主人,教师是学生学习的指导者”的原则,采用学生独立思考、小组交流、全班交流的方法,并且给学生留有充足的时间和空间,以学生的学为主导。这也是我们的科研课题“发展性课堂教学手段研究”所要求的留有空白和师生对话所要求的。
五、说教学流程。
第一环节:创设情境,激趣导入
利用课件,从《孙子算经》导入课题。目的是为了给数学课堂带来了浓厚的数学文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。
第二环节:学生尝试探究
出示例1,从简单的问题入手,引导学生分析问题:从这个题目中你了解到什么信息?
学生独立思考,小组交流,教师巡视指导,给学生留有充足的时间进行思考、交流。
第三环节;师生互动,讨论交流
教师首先要充分预设学生在课堂学习中的种种情况,真正了解学生的认知基础,学生对学习内容的可接受性,学生的思维方式及学习习惯,分析可能产生的差异。根据两次的课堂教学实践,我对学生可能出现的情况做了6种解决问题方法的预设。
课堂中学生的生成是宝贵的资源,教师要关注学生的生成,根据学生的思考来研究问题,真正做到以学生的问题导学,以学生为主。
解答《孙子算经》的原题,让学生在解题过程中感受假设法和列方程的方法带有普遍性,并让学生选择自己喜欢的方法来解决问题。让学生阅读文本,了解古人解决此问题的方法。
第四环节:联系生活,应用练习。目的是让学感受《鸡兔同笼》问题在生活中的应用。
第五环节:总结归纳,畅谈收获
教学中教师要适时地恰当地给予学生评价,课堂教学中关注学生的思考,如在学生能够自己想到一种解决问题的方法时,教师要及时地给予激励性的评价,,以鼓励学生积极思考。
六、说板书设计:板书以假设法和列方程为主,凸显两种解题方法。
通过本次的网络研讨活动,使我对数学广角的教学有了新的更深层次的认识:
1、“数学广角”不等同于“奥数”。
“数学广角”中的内容,大部分都是 “奥数”教材中才出现的内容,比如“鸡兔同笼问题”、“植树问题”、“抽屉原理问题”等等。但是数学广角不等于奥数,它的目的是想通过这些简单的事例渗透一些基本的数学思想方法,“让学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。”
2、“数学广角”要面对全体学生。
数学广角”中的内容相思维难度要大一些,学生难以理解,特别是对于那些智力水平属于中下的学生来说更是不易。在学习“数学广角”这部分内容时,要跟学习其它内容一样面向全体学生,使绝大多数的学生通过教学都能够理解和掌握一些基本的数学思想方法。
3、在教学中教师要引导学生经历猜想、实验、推理等探索过程,同时在学生遇到困难时给予必要的提醒、点拨,激励学生克服困难,战胜困难,使学生在探究的过程中不断思考,不断感悟,初步掌握“数学广角”内容所蕴含的数学思想和方法