倒数的认识 教案(通用3篇)
倒数的认识 教案 篇1
教学目标
1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点和难点
1.正确理解倒数的意义及“互为”的含义。
2.正确地求出一个数的倒数。
教学过程设计
一、 创设情境,提出问题。
师:我们知道语言文字中有些字是可以倒过来写的。
比如:吴—吞
学生举例:杏—呆。
师:数学中有没有这种情况呢?
你能把4/7倒过来写吗?
板书:4/7--(7/4) 8/3--(3/8) 2--(1/2)
师:你能根据分子、分母的位置关系给这几组数取个名字吗?
生:倒数。
出示课题:倒数的认识。
二、教学倒数的意义.
(1)5/8×1/8 7/15×5/7 6×1/2 1/40×5
(2)3/4×4/3 6/7×7/6 3×1/3 2/9×9/2
教师:“上面的两组题有什么不同?”(第一组每个算式中两个数相乘的积都不是1,
第二组每个算式中两个数相乘的积都是1.)
教师:“像第二组这样,乘积是1的两个数叫做互为倒数.”
教师举例说明什么叫做“互为倒数”.
3/4和4/3互为倒数,就是3/4的倒数是4/3,4/3的倒数是3/4.
教师:“倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一
个数的倒数,不能孤立地说某一个数是倒数.”
让学生试着说一说第二组其它3个算式中两个数的关系.说的时候,注意让
学生说出“互为倒数”,同时,让学生明确谁是谁的倒数.
教师:“谁还能举出几组两个数互为倒数的例子?”多让几个学生说一说,
并让学生根据倒数的意义来检验是不是正确.
三、教学例题(求倒数的方法).
教师:“请同学们仔细观察上面第二组算式,想想两个什么样的数就互为倒数.如果给你一个数你能找出它的倒数吗?”让学生适当讨论,并对发现的规律
进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.
出示例题. “怎样找出 的倒数呢?你能用刚才发现的规律找出来吗?”使学生想到只要把 的分子、分母调换位置就是 的倒数.教师板书:
分子、分母调换位置
─────────→
的倒数就可以让学生自己写.
教师接着问:“自然数5的倒数是多少?5可以看成分母是几的分数?”(可
以看成分母是1的分数.)
“那么5的倒数怎样求?”(把分子、分母调换位置,3的倒数就是1/5.)
教师:“任意一个自然数的倒数应该怎样求?”(一个自然数的倒数就是以
这个自然数作分母以1作分子的分数.)
接着问:“是不是所有的数都有倒数?什么数没有倒数?”(0没有倒数.)
“0为什么没有倒数?”(因为0不能作分母,所以0没有倒数.)
教师:“请大家总结一下求一个数的倒数的方法.”让学生多说一说,教师
注意提醒学生把0排除在外.
四、课堂练习。
写出下面各数的倒数:
4/13 9 1/7 25
反思:本节课的导入部分,我注意从文字中找数学的原形,使学生感到新颖、有趣,激起学生的好奇心,激发学生探究的欲望。并以问题为主线,由学生自己提出问题,自己讨论解决,培养了学生的问题意识,通过学生主动的数学活动建构倒数的意义,掌握求倒数的方法。
倒数的认识 教案 篇2
教学目标
1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点和难点
1.正确理解倒数的意义及“互为”的含义。
2.正确地求出一个数的倒数。
教学过程设计
(一)激发兴趣,引出概念
1.投影。哪个同学和老师比赛?谁说得快?
师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)
2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。
板书:乘积是1 两个数
3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?
生:两个数分子、分母颠倒位置就可以了。
师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)
4.举例说明,什么叫互为倒数?
师:3是倒数这句话对吗?为什么?
你们说得对,谁能说出几组倒数?
同桌互相说,每人说两组。(指名说)
问:怎样判断他们说得是否正确?
生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。
5.思考:1的倒数是几?为什么?0有倒数吗?为什么?
板书:1的倒数是1。0没有倒数。
(二)求一个数的倒数
同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?
1.出示前面的投影,找特点。
观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。
问:谁来说说你发现了什么?
生:互为倒数的两个数,是分子、分母交换了位置。
师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。
学生说老师板书:
3.同学们想一想,怎样求一个数的倒数?前后、左右的同学互相说一说。
谁来给同学们汇报一下?(2~3名)
板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。
问:老师为什么要空出一些地方?
生:0除外。
问:为什么要加上0除外?(板书:0除外。)
问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。
4.课堂练习。
写出下面各数的倒数:
35的倒数是怎么想的?
问:2的倒数是几? 10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?
5.写出1.5的倒数,怎样做?
(三)课堂总结
我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?
下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。
(四)巩固练习
1.投影。
问:怎么填得这么快,你是根据什么填的?
问:①谁能回答?
②你根据什么填的?
③为什么根据倒数的意义填?
看下一组题:
问:怎么填?根据什么?与(2)有什么不同?
师:所以做题时要认真审题,看清符号,千万不能出审题错误。
2.下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)
3.判断下面各题。对的举“√”,错的举“×”,并说明理由。
投影出示:
(1)乘积是1的两个数互为倒数。 (√)
(2)2.5和0.4互为倒数。 (√)
师:你们是怎么想的?
生:2.5和0.4乘积是1,所以是对的。
(3)因为1的倒数是1,所以0的倒数是0。 (×)
问:错在哪里?
问:错在何处?
问:这道题错在哪了?
生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。
4.游戏。
每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。
评比表扬优胜,找出谁给前面的同学改了错。
(五)作业
课本24页第3,5,6题。
课堂教学设计说明
1.这节课的设计思想首先从如何激发学生的学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。
2.这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。
倒数的认识 教案 篇3
整体感知
倒数的认识的教学,主要是通过观察,分析,对比,概括的方法让学生讨论,举例,交流,真正理解什么是倒数,怎样求倒数.待新知识弄清之后,根据本课内容的特点适当插入一些内容,也就是在教学过程中让同桌同学互相多提问,师生之间多提问,互相解疑,列举出一定范围各种各样的数,一方面看有没有倒数;另一方面看一看有倒数怎样求,这样可以激发学生探索新知识的兴趣,使课堂气氛活跃,在愉快之中达到理解,掌握之目的.
教学内容:教材23页的内容以及练习六1至6题.
素质教育目标
(一)知识教学点
1.通过学生观察,分析,比较,理解倒数的意义.
2.用列举的方法,发现规律,使学生掌握求倒数的方法.
(二)能力训练点
培养学生阅读能力,以及抽象概括能力,能准确地写出一定范围的各个数的倒数.
(三)德育渗透点
通过倒数的学习,同时渗透辩证唯物主义观点,倒数间的各个数都是相互依存,不能孤立存在.
教学重点:理解倒数的意义和怎样求倒数.
教学难点:求倒数方法的叙述.
教学步骤
一,铺垫孕伏
1.口算:
2.填空:
二,探究新知
(一)教学倒数的意义:
1.揭示课题:今天这节课我们学习一个知识——倒数.究竟什么是倒数,怎样求倒数呢 我们一起探讨.教师板书:倒数的认识.
2.观察算式:
(2)计算结果,发现共同点:每个算式中两个数相乘的积是1.
(3)互相讨论:通过几组算式及结果你有什么新发现 引导学生说出:每组中每个分数分子,分母调换了位置,相乘的结果都是1.
3.教师概括并板书:乘积是1的两个数叫做互为倒数.
(1)互相议论:"两个数"指什么数 "互为倒数"是什么意思
引导说出:"两个数"指两个分数或一个整数和一个分数……,"互为倒数"是说一个数是另一个数的倒数,不能说某一个数是倒数.
(3)学生举例:
①每人举出3组倒数的例子,并说明谁是谁的倒数"
②同桌互相举例(每人2组),并用倒数的定义来检验.
4,教师小结:通过分析你明白了什么 "倒数"是指"两个数"而说,"互为倒数"是指一个数不能称倒数,必须是一个数是另一个数的倒数.
5.反馈练习:
(1)判断:
①倒数是一个数( )
(二)教学求倒数的方法:
1.学生举例:谁能举出一组互为倒数的两个分数.
2.观察发现:互为倒数的一组数分子,分母有什么特点
引导学生找出互为倒数的两个数的分子,分母位置是互换的.
3.谈想法:设想一下怎样可以找到一个数的倒数呢
4.讲解例题:
(2)根据倒数的意义,自己找出求倒数的方法.使学生知道:只要把
(3)师生共同发现:求倒数的方法只要把这个数的分子,分母调换位置即可.
(4)表达方式并板书:
5.自然数怎样求倒数
(1)自己任意举出一个自然数,看有没有倒数 并追问:你是怎么想的 引导学生说出:自然数可以看成分母是1的分数,也可以把分子,分母调换位置.
(2)归纳求自然数倒数的方法,引导学生说出,一个自然数的倒数就是以这个自然数作分母,以1作分子的分数.
6.总结方法
(1)学生试述,互相讨论,看谁能够准确表达求倒数的方法.
(2)准确归纳并板书,求一个数( )的倒数,只要把这个数的分子,分母调换位置.
(3)讨论:是不是所有数都有倒数 为什么
引导学生说出:"0"没有倒数,因为"0"可以作分子,但调换位置后变为分母,分母不能是"0",所以"0"没有倒数.
(4)教师板书:(0除外)
7.阅读课本中倒数意义和求倒数的方法.
三,巩固发展
1.判断下列说法是否正确 错的改正.
(1)任何数都有倒数.
(2) c和d互为倒数,所以c×d=1.
四,全课小结
通过这节课的学习,你知道了什么 学会了什么 引导学生说出乘积是1的两个数叫做互为倒数,必须是互为倒数,以及求倒数的方法.五,布置作业 练习4,5,6题做在作业本上.六,板书设计
倒数的认识
乘积是1的两个数叫做互为倒数
求一个数(0除外)的倒数,只要把这个数的分子,分母调换位置.