欢迎访问易文君范文网!

多边形的内角和

作文吧 分享 时间: 加入收藏 我要投稿 点赞

多边形的内角和(通用17篇)JvF易文君-文库范文网

多边形的内角和 篇1

  四川射洪  邱银JvF易文君-文库范文网

  2005-05-06JvF易文君-文库范文网

  教学任务分析JvF易文君-文库范文网

  教学目标 JvF易文君-文库范文网

  知识技能JvF易文君-文库范文网

  通过探究,归纳出    JvF易文君-文库范文网

  数学思考JvF易文君-文库范文网

  1、  通过测量、类比、推理等数学活动,探索的公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。JvF易文君-文库范文网

  2、  通过把多边形转化成三角形体会转化思想在几何中的应用,同时JvF易文君-文库范文网

  时让学生体会从特殊到一般的认识问题的方法。JvF易文君-文库范文网

  3、  通过探索多边形内角和公式,让学生逐步从实验几何过度到JvF易文君-文库范文网

  论证几何JvF易文君-文库范文网

  解决问题JvF易文君-文库范文网

  通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效的解决问题。JvF易文君-文库范文网

  情感态度JvF易文君-文库范文网

  通过对生活中数学问题的探究,进一步提高学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情。JvF易文君-文库范文网

  重点JvF易文君-文库范文网

  探索多边形内角和的公式的探究过程。JvF易文君-文库范文网

  难点JvF易文君-文库范文网

  在探索时,如何把多边形转化成三角形。JvF易文君-文库范文网

  知识联系JvF易文君-文库范文网

  多边形的对角线和三角形的内角和为本节课的知识做了铺垫,本节课的内容为多边形的外角和做知识上的准备。JvF易文君-文库范文网

  知识背景JvF易文君-文库范文网

  对多边形在生活中有所认识JvF易文君-文库范文网

  学习兴趣JvF易文君-文库范文网

  通过探究过程更能激发学生学习的兴趣。JvF易文君-文库范文网

  教学工具JvF易文君-文库范文网

  三角板和几何画板。JvF易文君-文库范文网

  教学流程设计JvF易文君-文库范文网

  活动流程图JvF易文君-文库范文网

  活动内容和目的JvF易文君-文库范文网

  活动一,教师和学生任意画几个多边形,用量角器测其内角和JvF易文君-文库范文网

  活动二、探索四边形的内角和JvF易文君-文库范文网

  活动三、探索五边形、六边形、七边形的内角和JvF易文君-文库范文网

  活动四、探索任意公式JvF易文君-文库范文网

  活动五、多边形内角和公式的运用JvF易文君-文库范文网

  活动六、小结和布置作业 JvF易文君-文库范文网

  通过分组测量,得出这几个JvF易文君-文库范文网

  通过用不同方法分割四边形为三角形,探索四边形的内角和。JvF易文君-文库范文网

  通过类比四边形内角和的得出方法,探索其他,发展学生的推理能力JvF易文君-文库范文网

  通过把多边形转化成三角形体会转化思想在几何中的应用,同时让学生体会从特殊到一般的思考问题方法JvF易文君-文库范文网

  通过画正八边形体会和应用JvF易文君-文库范文网

  梳理所学知识,达到巩固发展和提高的目的JvF易文君-文库范文网

  教学过程 设计JvF易文君-文库范文网

  问题与情景JvF易文君-文库范文网

  师生行为JvF易文君-文库范文网

  设计意图JvF易文君-文库范文网

  设计情景:什么是正多边形?JvF易文君-文库范文网

  正八边形有什么特点?JvF易文君-文库范文网

  你会画边长为3cm的正八边形吗?JvF易文君-文库范文网

  学生思考并回答问题JvF易文君-文库范文网

  学生不会画八边形,画八边形需要知道它的每一个内角,怎么就能知道八边形的每一个内角,就是今天要解决的问题,以此来激发学生的学习兴趣和求知欲。JvF易文君-文库范文网

  活动1、JvF易文君-文库范文网

  在练习本画出任意四边形,五边星,六边形,七边形JvF易文君-文库范文网

  分组让学生量出每一个多边形的内角并求出他们的内角和,教师在黑板上画这四个四边形JvF易文君-文库范文网

  通过测量猜想每一个,感受数学的可实验性,感受数学由特殊到一般的研究思想JvF易文君-文库范文网

  活动2(重点)(难点)JvF易文君-文库范文网

  探索四边形的内角和JvF易文君-文库范文网

  学生在练习本上把一个四边形分割成几个三角形,教师在黑板上画几个四边形,叫几个学生来分割,从而用推理求四边形的内角和,师生共同讨论比较那一种分割方法比较合理有优点。JvF易文君-文库范文网

  通过分割及推理,培养学生用推理论证来说明数学结论的能力,同时也培养学生比较和归纳的能力。JvF易文君-文库范文网

  活动3、探索五边形、六边形,七边形的内角和JvF易文君-文库范文网

  学生根据活动二的分析,进一步用最优方法来分割五边形、六边形,七边形,从而通过推理得出他们的内角和JvF易文君-文库范文网

  通过分割及推理,进一步培养学生的解决问题和推理的能力。JvF易文君-文库范文网

  活动4、探索任意JvF易文君-文库范文网

  把活动2和3中的结论写下来,进行对比分析,进一步猜想和推导任意,教师作总结性的结论,并且用动画演示多边形随着边数的增加其内角和的变化过程。JvF易文君-文库范文网

  通过猜想、归纳、推导让学生体会从特殊到一般的思想,通过公式的归纳过程,体会数形之间的联系JvF易文君-文库范文网

  活动5、画一个边长为3cm的八边形JvF易文君-文库范文网

  让学生在练习本上画一个边长为3cm的八边形,教师进行评价和展示 JvF易文君-文库范文网

  巩固和应用多边形内角和,培养学生的应用意识JvF易文君-文库范文网

  活动6、小结和布置作业 JvF易文君-文库范文网

  师生共同回顾本节所学过的内容JvF易文君-文库范文网

多边形的内角和 篇2

  教学建议JvF易文君-文库范文网

  1.教材分析JvF易文君-文库范文网

  (1)知识结构:JvF易文君-文库范文网

  (2)重点和难点分析:JvF易文君-文库范文网

  重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。JvF易文君-文库范文网

  难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。JvF易文君-文库范文网

  2.教法建议JvF易文君-文库范文网

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。JvF易文君-文库范文网

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。JvF易文君-文库范文网

  (3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。JvF易文君-文库范文网

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。JvF易文君-文库范文网

  教学目标 :JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和定理;JvF易文君-文库范文网

  2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;JvF易文君-文库范文网

  3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;JvF易文君-文库范文网

  4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.JvF易文君-文库范文网

  教学重点:JvF易文君-文库范文网

  四边形的内角和定理.JvF易文君-文库范文网

  教学难点 :JvF易文君-文库范文网

  四边形的概念JvF易文君-文库范文网

  教学过程 :JvF易文君-文库范文网

  (一)复习JvF易文君-文库范文网

  在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.JvF易文君-文库范文网

  (二)提出问题,引入新课JvF易文君-文库范文网

  利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)JvF易文君-文库范文网

  问题:你能类比三角形的概念,说出四边形的概念吗?JvF易文君-文库范文网

  (三)理解概念JvF易文君-文库范文网

  1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.JvF易文君-文库范文网

  在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.JvF易文君-文库范文网

  2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.JvF易文君-文库范文网

  3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.JvF易文君-文库范文网

  练习:课本124页1、2题.JvF易文君-文库范文网

  4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.JvF易文君-文库范文网

  5.四边形的对角线:JvF易文君-文库范文网

  (四)四边形的内角和定理JvF易文君-文库范文网

  定理:四边形的内角和等于 .JvF易文君-文库范文网

  注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.JvF易文君-文库范文网

  (五)应用、反思JvF易文君-文库范文网

  例1 已知:如图,直线 ,垂足为B, 直线 , 垂足为C.JvF易文君-文库范文网

  求证:(1) ;(2)JvF易文君-文库范文网

  证明:(1) (四边形的内角和等于 ),JvF易文君-文库范文网

  (2)   JvF易文君-文库范文网

  .JvF易文君-文库范文网

  练习:JvF易文君-文库范文网

  1.课本124页3题.JvF易文君-文库范文网

  2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?JvF易文君-文库范文网

  小结:JvF易文君-文库范文网

  知识:四边形的有关概念及其内角和定理.JvF易文君-文库范文网

  能力:向学生渗透类比和转化的思想方法.JvF易文君-文库范文网

  作业 : 课本130页 2、3、4题.JvF易文君-文库范文网

多边形的内角和 篇3

  教学建议JvF易文君-文库范文网

  1.教材分析JvF易文君-文库范文网

  (1)知识结构:JvF易文君-文库范文网

  (2)重点和难点分析:JvF易文君-文库范文网

  重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。JvF易文君-文库范文网

  难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。JvF易文君-文库范文网

  2.教法建议JvF易文君-文库范文网

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。JvF易文君-文库范文网

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。JvF易文君-文库范文网

  (3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。JvF易文君-文库范文网

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。JvF易文君-文库范文网

  教学目标:JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和定理;JvF易文君-文库范文网

  2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;JvF易文君-文库范文网

  3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;JvF易文君-文库范文网

  4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.JvF易文君-文库范文网

  教学重点:JvF易文君-文库范文网

  四边形的内角和定理.JvF易文君-文库范文网

  教学难点:JvF易文君-文库范文网

  四边形的概念JvF易文君-文库范文网

  教学过程:JvF易文君-文库范文网

  (一)复习JvF易文君-文库范文网

  在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.JvF易文君-文库范文网

  (二)提出问题,引入新课JvF易文君-文库范文网

  利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)JvF易文君-文库范文网

  问题:你能类比三角形的概念,说出四边形的概念吗?JvF易文君-文库范文网

  (三)理解概念JvF易文君-文库范文网

  1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.JvF易文君-文库范文网

  在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.JvF易文君-文库范文网

  2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.JvF易文君-文库范文网

  3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.JvF易文君-文库范文网

  练习:课本124页1、2题.JvF易文君-文库范文网

  4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.JvF易文君-文库范文网

  5.四边形的对角线:JvF易文君-文库范文网

  (四)四边形的内角和定理JvF易文君-文库范文网

  定理:四边形的内角和等于 .JvF易文君-文库范文网

  注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.JvF易文君-文库范文网

  (五)应用、反思JvF易文君-文库范文网

  例1 已知:如图,直线 ,垂足为B, 直线 , 垂足为C.JvF易文君-文库范文网

  求证:(1) ;(2)JvF易文君-文库范文网

  证明:(1) (四边形的内角和等于 ),JvF易文君-文库范文网

  (2)  JvF易文君-文库范文网

  .JvF易文君-文库范文网

  练习:JvF易文君-文库范文网

  1.课本124页3题.JvF易文君-文库范文网

  2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?JvF易文君-文库范文网

  小结:JvF易文君-文库范文网

  知识:四边形的有关概念及其内角和定理.JvF易文君-文库范文网

  能力:向学生渗透类比和转化的思想方法.JvF易文君-文库范文网

  作业 : 课本130页 2、3、4题. JvF易文君-文库范文网

多边形的内角和 篇4

  教学建议JvF易文君-文库范文网

  1.教材分析JvF易文君-文库范文网

  (1)知识结构:JvF易文君-文库范文网

  (2)重点和难点分析:JvF易文君-文库范文网

  重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。JvF易文君-文库范文网

  难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。JvF易文君-文库范文网

  2.教法建议JvF易文君-文库范文网

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。JvF易文君-文库范文网

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。JvF易文君-文库范文网

  (3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。JvF易文君-文库范文网

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。JvF易文君-文库范文网

  教学目标 :JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和定理;JvF易文君-文库范文网

  2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;JvF易文君-文库范文网

  3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;JvF易文君-文库范文网

  4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.JvF易文君-文库范文网

  教学重点:JvF易文君-文库范文网

  四边形的内角和定理.JvF易文君-文库范文网

  教学难点 :JvF易文君-文库范文网

  四边形的概念JvF易文君-文库范文网

  教学过程 :JvF易文君-文库范文网

  (一)复习JvF易文君-文库范文网

  在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.JvF易文君-文库范文网

  (二)提出问题,引入新课JvF易文君-文库范文网

  利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)JvF易文君-文库范文网

  问题:你能类比三角形的概念,说出四边形的概念吗?JvF易文君-文库范文网

  (三)理解概念JvF易文君-文库范文网

  1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.JvF易文君-文库范文网

  在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.JvF易文君-文库范文网

  2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.JvF易文君-文库范文网

  3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.JvF易文君-文库范文网

  练习:课本124页1、2题.JvF易文君-文库范文网

  4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.JvF易文君-文库范文网

  5.四边形的对角线:JvF易文君-文库范文网

  (四)四边形的内角和定理JvF易文君-文库范文网

  定理:四边形的内角和等于 .JvF易文君-文库范文网

  注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.JvF易文君-文库范文网

  (五)应用、反思JvF易文君-文库范文网

  例1 已知:如图,直线 ,垂足为B, 直线 , 垂足为C.JvF易文君-文库范文网

  求证:(1) ;(2)JvF易文君-文库范文网

  证明:(1) (四边形的内角和等于 ),JvF易文君-文库范文网

  (2)  JvF易文君-文库范文网

  .JvF易文君-文库范文网

  练习:JvF易文君-文库范文网

  1.课本124页3题.JvF易文君-文库范文网

  2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?JvF易文君-文库范文网

  小结:JvF易文君-文库范文网

  知识:四边形的有关概念及其内角和定理.JvF易文君-文库范文网

  能力:向学生渗透类比和转化的思想方法.JvF易文君-文库范文网

  作业 : 课本130页 2、3、4题. JvF易文君-文库范文网

多边形的内角和 篇5

  教学建议JvF易文君-文库范文网

  1.教材分析JvF易文君-文库范文网

  (1)知识结构:JvF易文君-文库范文网

  (2)重点和难点分析:JvF易文君-文库范文网

  重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。JvF易文君-文库范文网

  难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。JvF易文君-文库范文网

  2.教法建议JvF易文君-文库范文网

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。JvF易文君-文库范文网

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。JvF易文君-文库范文网

  (3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。JvF易文君-文库范文网

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。JvF易文君-文库范文网

  教学目标:JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和定理;JvF易文君-文库范文网

  2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;JvF易文君-文库范文网

  3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;JvF易文君-文库范文网

  4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.JvF易文君-文库范文网

  教学重点:JvF易文君-文库范文网

  四边形的内角和定理.JvF易文君-文库范文网

  教学难点:JvF易文君-文库范文网

  四边形的概念JvF易文君-文库范文网

  教学过程:JvF易文君-文库范文网

  (一)复习JvF易文君-文库范文网

  在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.JvF易文君-文库范文网

  (二)提出问题,引入新课JvF易文君-文库范文网

  利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)JvF易文君-文库范文网

  问题:你能类比三角形的概念,说出四边形的概念吗?JvF易文君-文库范文网

  (三)理解概念JvF易文君-文库范文网

  1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.JvF易文君-文库范文网

  在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.JvF易文君-文库范文网

  2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.JvF易文君-文库范文网

  3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.JvF易文君-文库范文网

  练习:课本124页1、2题.JvF易文君-文库范文网

  4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.JvF易文君-文库范文网

  5.四边形的对角线:JvF易文君-文库范文网

  (四)四边形的内角和定理JvF易文君-文库范文网

  定理:四边形的内角和等于 .JvF易文君-文库范文网

  注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.JvF易文君-文库范文网

  (五)应用、反思JvF易文君-文库范文网

  例1 已知:如图,直线 ,垂足为B, 直线 , 垂足为C.JvF易文君-文库范文网

  求证:(1) ;(2)JvF易文君-文库范文网

  证明:(1) (四边形的内角和等于 ),JvF易文君-文库范文网

  (2)  JvF易文君-文库范文网

  .JvF易文君-文库范文网

  练习:JvF易文君-文库范文网

  1.课本124页3题.JvF易文君-文库范文网

  2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?JvF易文君-文库范文网

  小结:JvF易文君-文库范文网

  知识:四边形的有关概念及其内角和定理.JvF易文君-文库范文网

  能力:向学生渗透类比和转化的思想方法.JvF易文君-文库范文网

  作业 : 课本130页 2、3、4题. JvF易文君-文库范文网

多边形的内角和 篇6

  教学建议JvF易文君-文库范文网

  1.教材分析JvF易文君-文库范文网

  (1)知识结构:JvF易文君-文库范文网

  (2)重点和难点分析:JvF易文君-文库范文网

  重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。JvF易文君-文库范文网

  难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。JvF易文君-文库范文网

  2.教法建议JvF易文君-文库范文网

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。JvF易文君-文库范文网

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。JvF易文君-文库范文网

  (3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。JvF易文君-文库范文网

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。JvF易文君-文库范文网

  教学目标 :JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和定理;JvF易文君-文库范文网

  2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;JvF易文君-文库范文网

  3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;JvF易文君-文库范文网

  4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.JvF易文君-文库范文网

  教学重点:JvF易文君-文库范文网

  四边形的内角和定理.JvF易文君-文库范文网

  教学难点 :JvF易文君-文库范文网

  四边形的概念JvF易文君-文库范文网

  教学过程 :JvF易文君-文库范文网

  (一)复习JvF易文君-文库范文网

  在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.JvF易文君-文库范文网

  (二)提出问题,引入新课JvF易文君-文库范文网

  利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)JvF易文君-文库范文网

  问题:你能类比三角形的概念,说出四边形的概念吗?JvF易文君-文库范文网

  (三)理解概念JvF易文君-文库范文网

  1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.JvF易文君-文库范文网

  在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.JvF易文君-文库范文网

  2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.JvF易文君-文库范文网

  3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.JvF易文君-文库范文网

  练习:课本124页1、2题.JvF易文君-文库范文网

  4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.JvF易文君-文库范文网

  5.四边形的对角线:JvF易文君-文库范文网

  (四)四边形的内角和定理JvF易文君-文库范文网

  定理:四边形的内角和等于 .JvF易文君-文库范文网

  注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.JvF易文君-文库范文网

  (五)应用、反思JvF易文君-文库范文网

  例1 已知:如图,直线 ,垂足为B, 直线 , 垂足为C.JvF易文君-文库范文网

  求证:(1) ;(2)JvF易文君-文库范文网

  证明:(1) (四边形的内角和等于 ),JvF易文君-文库范文网

  (2)   JvF易文君-文库范文网

  .JvF易文君-文库范文网

  练习:JvF易文君-文库范文网

  1.课本124页3题.JvF易文君-文库范文网

  2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?JvF易文君-文库范文网

  小结:JvF易文君-文库范文网

  知识:四边形的有关概念及其内角和定理.JvF易文君-文库范文网

  能力:向学生渗透类比和转化的思想方法.JvF易文君-文库范文网

  作业 : 课本130页 2、3、4题.JvF易文君-文库范文网

多边形的内角和 篇7

  一、素质教育目标JvF易文君-文库范文网

  (一)知识教学点JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.JvF易文君-文库范文网

  2.了解四边形的不稳定性及它在实际生产,生活中的应用.JvF易文君-文库范文网

  (二)能力训练点JvF易文君-文库范文网

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.JvF易文君-文库范文网

  2.通过推导四边形内角和定理,对学生渗透化归思想.JvF易文君-文库范文网

  3.会根据比较简单的条件画出指定的四边形.JvF易文君-文库范文网

  4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.JvF易文君-文库范文网

  (三)德育渗透点JvF易文君-文库范文网

  使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.JvF易文君-文库范文网

  (四)美育渗透点JvF易文君-文库范文网

  通过四边形内角和定理数学,渗透统一美,应用美.JvF易文君-文库范文网

  二、学法引导JvF易文君-文库范文网

  类比、观察、引导、讲解JvF易文君-文库范文网

  三、重点·难点·疑点及解决办法JvF易文君-文库范文网

  1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.JvF易文君-文库范文网

  2.教学难点 :理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.JvF易文君-文库范文网

  3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.JvF易文君-文库范文网

  四、课时安排JvF易文君-文库范文网

  2课时JvF易文君-文库范文网

  五、教具学具准备JvF易文君-文库范文网

  投影仪、胶片、四边形模型、常用画图工具JvF易文君-文库范文网

  六、师生互动活动设计JvF易文君-文库范文网

  教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.JvF易文君-文库范文网

  第2课时JvF易文君-文库范文网

  七、教学步骤 JvF易文君-文库范文网

  【复习提问】JvF易文君-文库范文网

  1.什么叫四边形?四边形的内角和定理是什么?JvF易文君-文库范文网

  2.如图4-9, 求 的度数(打出投影).JvF易文君-文库范文网

  【引入新课】JvF易文君-文库范文网

  前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.JvF易文君-文库范文网

  【讲解新课】JvF易文君-文库范文网

  1.四边形的外角JvF易文君-文库范文网

  与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.JvF易文君-文库范文网

  2.外角和定理JvF易文君-文库范文网

  例1  已知:如图4-11,四边形ABCD的四个内角分别为 ,每一个顶点处有一个外角,设它们分别为 .JvF易文君-文库范文网

  求 .JvF易文君-文库范文网

  (1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).JvF易文君-文库范文网

  (2)教给学生一组外角的画法——同向法.JvF易文君-文库范文网

  即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.JvF易文君-文库范文网

  (3)利用每一个外角与其邻补角的关系及四边形内角和为360°.JvF易文君-文库范文网

  证得:JvF易文君-文库范文网

  360°JvF易文君-文库范文网

  外角和定理:四边形的外角和等于360°JvF易文君-文库范文网

  3.四边形的不稳定性JvF易文君-文库范文网

  ①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?JvF易文君-文库范文网

  (学生回答)JvF易文君-文库范文网

  ②若以 为边作四边形ABCD.JvF易文君-文库范文网

  提示画法:①画任意小于平角的 .JvF易文君-文库范文网

  ②在 的两边上截取 .JvF易文君-文库范文网

  ③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点.JvF易文君-文库范文网

  ④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13.JvF易文君-文库范文网

  大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为 的大小不固定,所以四边形的形状不确定.JvF易文君-文库范文网

  ③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性.JvF易文君-文库范文网

  教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:JvF易文君-文库范文网

  ①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.JvF易文君-文库范文网

  (4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.JvF易文君-文库范文网

  【总结、扩展】JvF易文君-文库范文网

  1.小结:JvF易文君-文库范文网

  (1)四边形外角概念、外角和定理.JvF易文君-文库范文网

  (2)四边形不稳定性的应用和克服不稳定性的理论根据.JvF易文君-文库范文网

  2.扩展:如图4-15,在四边形ABCD中, ,求四边形ABCD的面积JvF易文君-文库范文网

  八、布置作业 JvF易文君-文库范文网

  教材P128中4.JvF易文君-文库范文网

  九、板书设计 JvF易文君-文库范文网

  十、随堂练习JvF易文君-文库范文网

  教材P124中1、2JvF易文君-文库范文网

  补充:(1)在四边形ABCD中, , 是四边形的外角,且 ,则 度.JvF易文君-文库范文网

  (2)在四边形ABCD中,若分别与 相邻的外角的比是1:2:3:4,则 度, 度, 度, 度JvF易文君-文库范文网

  (3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.JvF易文君-文库范文网

多边形的内角和 篇8

  一、素质教育目标JvF易文君-文库范文网

  (一)知识教学JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.JvF易文君-文库范文网

  2.了解四边形的不稳定性及它在实际生产,生活中的应用.JvF易文君-文库范文网

  (二)能力训练点JvF易文君-文库范文网

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.JvF易文君-文库范文网

  2.通过推导四边形内角和定理,对学生渗透化归思想.JvF易文君-文库范文网

  3.会根据比较简单的条件画出指定的四边形.JvF易文君-文库范文网

  4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.JvF易文君-文库范文网

  (三)德育渗透点JvF易文君-文库范文网

  使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.JvF易文君-文库范文网

  (四)美育渗透点JvF易文君-文库范文网

  通过四边形内角和定理数学,渗透统一美,应用美.JvF易文君-文库范文网

  二、学法引导JvF易文君-文库范文网

  类比、观察、引导、讲解JvF易文君-文库范文网

  三、重点·难点·疑点及解决办法JvF易文君-文库范文网

  1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.JvF易文君-文库范文网

  2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.JvF易文君-文库范文网

  3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.JvF易文君-文库范文网

  四、课时安排JvF易文君-文库范文网

  2课时JvF易文君-文库范文网

  五、教具学具准备JvF易文君-文库范文网

  投影仪、胶片、四边形模型、常用画图工具JvF易文君-文库范文网

  六、师生互动活动设计JvF易文君-文库范文网

  教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.JvF易文君-文库范文网

  第一课时JvF易文君-文库范文网

  七、教学步骤JvF易文君-文库范文网

  【复习引入】JvF易文君-文库范文网

  在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题.JvF易文君-文库范文网

  【引入新课】JvF易文君-文库范文网

  用投影仪打出课前画好的教材中P119的图.JvF易文君-文库范文网

  师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).JvF易文君-文库范文网

  【讲解新课】JvF易文君-文库范文网

  1.四边形的有关概念JvF易文君-文库范文网

  结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:JvF易文君-文库范文网

  (1)要结合图形.JvF易文君-文库范文网

  (2)要与三角形类比.JvF易文君-文库范文网

  (3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).JvF易文君-文库范文网

  (4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.JvF易文君-文库范文网

  (5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.JvF易文君-文库范文网

  (6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.JvF易文君-文库范文网

  2.四边形内角和定理JvF易文君-文库范文网

  教师问:JvF易文君-文库范文网

  (1)在图4-3中对角线AC把四边形ABCD分成几个三角形?JvF易文君-文库范文网

  (2)在图4-6中两条对角线AC和BD把四边形分成几个三角形?JvF易文君-文库范文网

  (3)若在四边形ABCD 如图4-7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形.JvF易文君-文库范文网

  我们知道,三角形内角和等于180°,那么四边形的内角和就等于:JvF易文君-文库范文网

  ①2×180°=360°如图4—6;JvF易文君-文库范文网

  ②4×180°-360°=360°如图4-7.JvF易文君-文库范文网

  例1  已知:如图4—8,直线 于B、 于C.JvF易文君-文库范文网

  求证:(1) ; (2) .JvF易文君-文库范文网

  本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.JvF易文君-文库范文网

  【总结、扩展】JvF易文君-文库范文网

  1.四边形的有关概念.JvF易文君-文库范文网

  2.四边形对角线的作用.JvF易文君-文库范文网

  3.四边形内角和定理.JvF易文君-文库范文网

  八、布置作业 JvF易文君-文库范文网

  教材P128中1(1)、2、 3.JvF易文君-文库范文网

  九、板书设计JvF易文君-文库范文网

  四边形(一)JvF易文君-文库范文网

  四边形有关概念JvF易文君-文库范文网

  四边形内角和JvF易文君-文库范文网

  例1JvF易文君-文库范文网

  十、随堂练习JvF易文君-文库范文网

  教材P122中1、2、3. JvF易文君-文库范文网

多边形的内角和 篇9

  一、素质教育目标JvF易文君-文库范文网

  (一)知识教学点JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.JvF易文君-文库范文网

  2.了解四边形的不稳定性及它在实际生产,生活中的应用.JvF易文君-文库范文网

  (二)能力训练点JvF易文君-文库范文网

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.JvF易文君-文库范文网

  2.通过推导四边形内角和定理,对学生渗透化归思想.JvF易文君-文库范文网

  3.会根据比较简单的条件画出指定的四边形.JvF易文君-文库范文网

  4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.JvF易文君-文库范文网

  (三)德育渗透点JvF易文君-文库范文网

  使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.JvF易文君-文库范文网

  (四)美育渗透点JvF易文君-文库范文网

  通过四边形内角和定理数学,渗透统一美,应用美.JvF易文君-文库范文网

  二、学法引导JvF易文君-文库范文网

  类比、观察、引导、讲解JvF易文君-文库范文网

  三、重点·难点·疑点及解决办法JvF易文君-文库范文网

  1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.JvF易文君-文库范文网

  2.教学难点 :理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.JvF易文君-文库范文网

  3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.JvF易文君-文库范文网

  四、课时安排JvF易文君-文库范文网

  2课时JvF易文君-文库范文网

  五、教具学具准备JvF易文君-文库范文网

  投影仪、胶片、四边形模型、常用画图工具JvF易文君-文库范文网

  六、师生互动活动设计JvF易文君-文库范文网

  教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.JvF易文君-文库范文网

  第一课时JvF易文君-文库范文网

  七、教学步骤 JvF易文君-文库范文网

  【复习引入】JvF易文君-文库范文网

  在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题.JvF易文君-文库范文网

  【引入新课】JvF易文君-文库范文网

  用投影仪打出课前画好的教材中P119的图.JvF易文君-文库范文网

  师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).JvF易文君-文库范文网

  【讲解新课】JvF易文君-文库范文网

  1.四边形的有关概念JvF易文君-文库范文网

  结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:JvF易文君-文库范文网

  (1)要结合图形.JvF易文君-文库范文网

  (2)要与三角形类比.JvF易文君-文库范文网

  (3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).JvF易文君-文库范文网

  (4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.JvF易文君-文库范文网

  (5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.JvF易文君-文库范文网

  (6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.JvF易文君-文库范文网

  2.四边形内角和定理JvF易文君-文库范文网

  教师问:JvF易文君-文库范文网

  (1)在图4-3中对角线AC把四边形ABCD分成几个三角形?JvF易文君-文库范文网

  (2)在图4-6中两条对角线AC和BD把四边形分成几个三角形?JvF易文君-文库范文网

  (3)若在四边形ABCD 如图4-7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形.JvF易文君-文库范文网

  我们知道,三角形内角和等于180°,那么四边形的内角和就等于:JvF易文君-文库范文网

  ①2×180°=360°如图4—6;JvF易文君-文库范文网

  ②4×180°-360°=360°如图4-7.JvF易文君-文库范文网

  例1  已知:如图4—8,直线 于B、 于C.JvF易文君-文库范文网

  求证:(1) ; (2) .JvF易文君-文库范文网

  本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.JvF易文君-文库范文网

  【总结、扩展】JvF易文君-文库范文网

  1.四边形的有关概念.JvF易文君-文库范文网

  2.四边形对角线的作用.JvF易文君-文库范文网

  3.四边形内角和定理.JvF易文君-文库范文网

  八、布置作业 JvF易文君-文库范文网

  教材P128中1(1)、2、 3.JvF易文君-文库范文网

  九、板书设计 JvF易文君-文库范文网

  四边形(一)JvF易文君-文库范文网

  四边形有关概念JvF易文君-文库范文网

  四边形内角和JvF易文君-文库范文网

  例1JvF易文君-文库范文网

  十、随堂练习JvF易文君-文库范文网

  教材P122中1、2、3. JvF易文君-文库范文网

多边形的内角和 篇10

  完成三角形内外角和的教学之后,学生很自然地就会想到对于多边形的情况如何。 为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在: JvF易文君-文库范文网

  (1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。 JvF易文君-文库范文网

  (2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。 JvF易文君-文库范文网

  (3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。 JvF易文君-文库范文网

  (4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。JvF易文君-文库范文网

多边形的内角和 篇11

  一、素质教育目标JvF易文君-文库范文网

  (一)知识教学点JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.JvF易文君-文库范文网

  2.了解四边形的不稳定性及它在实际生产,生活中的应用.JvF易文君-文库范文网

  (二)能力训练点JvF易文君-文库范文网

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.JvF易文君-文库范文网

  2.通过推导四边形内角和定理,对学生渗透化归思想.JvF易文君-文库范文网

  3.会根据比较简单的条件画出指定的四边形.JvF易文君-文库范文网

  4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.JvF易文君-文库范文网

  (三)德育渗透点JvF易文君-文库范文网

  使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.JvF易文君-文库范文网

  (四)美育渗透点JvF易文君-文库范文网

  通过四边形内角和定理数学,渗透统一美,应用美.JvF易文君-文库范文网

  二、学法引导JvF易文君-文库范文网

  类比、观察、引导、讲解JvF易文君-文库范文网

  三、重点·难点·疑点及解决办法JvF易文君-文库范文网

  1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.JvF易文君-文库范文网

  2.教学难点 :理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.JvF易文君-文库范文网

  3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.JvF易文君-文库范文网

  四、课时安排JvF易文君-文库范文网

  2课时JvF易文君-文库范文网

  五、教具学具准备JvF易文君-文库范文网

  投影仪、胶片、四边形模型、常用画图工具JvF易文君-文库范文网

  六、师生互动活动设计JvF易文君-文库范文网

  教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.JvF易文君-文库范文网

  第2课时JvF易文君-文库范文网

  七、教学步骤 JvF易文君-文库范文网

  【复习提问】JvF易文君-文库范文网

  1.什么叫四边形?四边形的内角和定理是什么?JvF易文君-文库范文网

  2.如图4-9, 求 的度数(打出投影).JvF易文君-文库范文网

  【引入新课】JvF易文君-文库范文网

  前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.JvF易文君-文库范文网

  【讲解新课】JvF易文君-文库范文网

  1.四边形的外角JvF易文君-文库范文网

  与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.JvF易文君-文库范文网

  2.外角和定理JvF易文君-文库范文网

  例1  已知:如图4-11,四边形ABCD的四个内角分别为 ,每一个顶点处有一个外角,设它们分别为 .JvF易文君-文库范文网

  求 .JvF易文君-文库范文网

  (1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).JvF易文君-文库范文网

  (2)教给学生一组外角的画法——同向法.JvF易文君-文库范文网

  即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.JvF易文君-文库范文网

  (3)利用每一个外角与其邻补角的关系及四边形内角和为360°.JvF易文君-文库范文网

  证得:JvF易文君-文库范文网

  360°JvF易文君-文库范文网

  外角和定理:四边形的外角和等于360°JvF易文君-文库范文网

  3.四边形的不稳定性JvF易文君-文库范文网

  ①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?JvF易文君-文库范文网

  (学生回答)JvF易文君-文库范文网

  ②若以 为边作四边形ABCD.JvF易文君-文库范文网

  提示画法:①画任意小于平角的 .JvF易文君-文库范文网

  ②在 的两边上截取 .JvF易文君-文库范文网

  ③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点.JvF易文君-文库范文网

  ④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13.JvF易文君-文库范文网

  大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为 的大小不固定,所以四边形的形状不确定.JvF易文君-文库范文网

  ③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性.JvF易文君-文库范文网

  教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:JvF易文君-文库范文网

  ①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.JvF易文君-文库范文网

  (4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.JvF易文君-文库范文网

  【总结、扩展】JvF易文君-文库范文网

  1.小结:JvF易文君-文库范文网

  (1)四边形外角概念、外角和定理.JvF易文君-文库范文网

  (2)四边形不稳定性的应用和克服不稳定性的理论根据.JvF易文君-文库范文网

  2.扩展:如图4-15,在四边形ABCD中, ,求四边形ABCD的面积JvF易文君-文库范文网

  八、布置作业 JvF易文君-文库范文网

  教材P128中4.JvF易文君-文库范文网

  九、板书设计 JvF易文君-文库范文网

  十、随堂练习JvF易文君-文库范文网

  教材P124中1、2JvF易文君-文库范文网

  补充:(1)在四边形ABCD中, , 是四边形的外角,且 ,则 度.JvF易文君-文库范文网

  (2)在四边形ABCD中,若分别与 相邻的外角的比是1:2:3:4,则 度, 度, 度, 度JvF易文君-文库范文网

  (3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.JvF易文君-文库范文网

多边形的内角和 篇12

  一、素质教育目标JvF易文君-文库范文网

  (一)知识教学JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.JvF易文君-文库范文网

  2.了解四边形的不稳定性及它在实际生产,生活中的应用.JvF易文君-文库范文网

  (二)能力训练点JvF易文君-文库范文网

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.JvF易文君-文库范文网

  2.通过推导四边形内角和定理,对学生渗透化归思想.JvF易文君-文库范文网

  3.会根据比较简单的条件画出指定的四边形.JvF易文君-文库范文网

  4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.JvF易文君-文库范文网

  (三)德育渗透点JvF易文君-文库范文网

  使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.JvF易文君-文库范文网

  (四)美育渗透点JvF易文君-文库范文网

  通过四边形内角和定理数学,渗透统一美,应用美.JvF易文君-文库范文网

  二、学法引导JvF易文君-文库范文网

  类比、观察、引导、讲解JvF易文君-文库范文网

  三、重点·难点·疑点及解决办法JvF易文君-文库范文网

  1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.JvF易文君-文库范文网

  2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.JvF易文君-文库范文网

  3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.JvF易文君-文库范文网

  四、课时安排JvF易文君-文库范文网

  2课时JvF易文君-文库范文网

  五、教具学具准备JvF易文君-文库范文网

  投影仪、胶片、四边形模型、常用画图工具JvF易文君-文库范文网

  六、师生互动活动设计JvF易文君-文库范文网

  教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.JvF易文君-文库范文网

  第一课时JvF易文君-文库范文网

  七、教学步骤JvF易文君-文库范文网

  【复习引入】JvF易文君-文库范文网

  在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题.JvF易文君-文库范文网

  【引入新课】JvF易文君-文库范文网

  用投影仪打出课前画好的教材中P119的图.JvF易文君-文库范文网

  师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).JvF易文君-文库范文网

  【讲解新课】JvF易文君-文库范文网

  1.四边形的有关概念JvF易文君-文库范文网

  结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:JvF易文君-文库范文网

  (1)要结合图形.JvF易文君-文库范文网

  (2)要与三角形类比.JvF易文君-文库范文网

  (3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).JvF易文君-文库范文网

  (4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.JvF易文君-文库范文网

  (5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.JvF易文君-文库范文网

  (6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.JvF易文君-文库范文网

  2.四边形内角和定理JvF易文君-文库范文网

  教师问:JvF易文君-文库范文网

  (1)在图4-3中对角线AC把四边形ABCD分成几个三角形?JvF易文君-文库范文网

  (2)在图4-6中两条对角线AC和BD把四边形分成几个三角形?JvF易文君-文库范文网

  (3)若在四边形ABCD 如图4-7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形.JvF易文君-文库范文网

  我们知道,三角形内角和等于180°,那么四边形的内角和就等于:JvF易文君-文库范文网

  ①2×180°=360°如图4—6;JvF易文君-文库范文网

  ②4×180°-360°=360°如图4-7.JvF易文君-文库范文网

  例1  已知:如图4—8,直线 于B、 于C.JvF易文君-文库范文网

  求证:(1) ; (2) .JvF易文君-文库范文网

  本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.JvF易文君-文库范文网

  【总结、扩展】JvF易文君-文库范文网

  1.四边形的有关概念.JvF易文君-文库范文网

  2.四边形对角线的作用.JvF易文君-文库范文网

  3.四边形内角和定理.JvF易文君-文库范文网

  八、布置作业 JvF易文君-文库范文网

  教材P128中1(1)、2、 3.JvF易文君-文库范文网

  九、板书设计JvF易文君-文库范文网

  四边形(一)JvF易文君-文库范文网

  四边形有关概念JvF易文君-文库范文网

  四边形内角和JvF易文君-文库范文网

  例1JvF易文君-文库范文网

  十、随堂练习JvF易文君-文库范文网

  教材P122中1、2、3. JvF易文君-文库范文网

多边形的内角和 篇13

  教学目的:1、使学生了解多边形,凸多边形的概念;JvF易文君-文库范文网

  2、使学生认识多边形的内角和的表示方法及外角和为360 ;JvF易文君-文库范文网

  3、让学生体会转化(把未知化已知)等数学思想;JvF易文君-文库范文网

  4、培养学生合作、表达等能力情感。JvF易文君-文库范文网

  教学重点与难点:多边形内角和与外角和特点是重点JvF易文君-文库范文网

  利用化归思想归纳多边形内角和与外角和特点是难点。JvF易文君-文库范文网

  教学过程:JvF易文君-文库范文网

  一、创设情境JvF易文君-文库范文网

  1、  多边形定义 JvF易文君-文库范文网

  师出示一个三角形,问:这是什么图形?它是怎样定义的?JvF易文君-文库范文网

  生:三条线段首尾顺次连接而成的图形。JvF易文君-文库范文网

  师:以次类推,你能告诉我什么样的图形叫做四边形?五边形?……n边形呢?JvF易文君-文库范文网

  这些图形我们都叫做多边形。JvF易文君-文库范文网

  2、  多边形记法JvF易文君-文库范文网

  3、  凸多边形概念JvF易文君-文库范文网

  师:屏幕上的这一类多边形我们称为凸多边形,还有一类如:JvF易文君-文库范文网

  我们叫做凹多边形,不在我们今天的研究范围之内。JvF易文君-文库范文网

  二、探究新知JvF易文君-文库范文网

  1、  确立研究范围JvF易文君-文库范文网

  师:请大家观察这些多边形,结合我们已学过的三角形,大家认为有哪些部分值得我们研究?JvF易文君-文库范文网

  生1:它的角。JvF易文君-文库范文网

  生2:多边形的边。JvF易文君-文库范文网

  师:那么今天我们不妨先来研究一下多边形的角。(出示课题:多边形的内角和与外角和)JvF易文君-文库范文网

  2、  自主探究多边形的内角和JvF易文君-文库范文网

  JvF易文君-文库范文网

多边形的内角和 篇14

  一、素质教育目标JvF易文君-文库范文网

  (一)知识教学点JvF易文君-文库范文网

  1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.JvF易文君-文库范文网

  2.了解四边形的不稳定性及它在实际生产,生活中的应用.JvF易文君-文库范文网

  (二)能力训练点JvF易文君-文库范文网

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.JvF易文君-文库范文网

  2.通过推导四边形内角和定理,对学生渗透化归思想.JvF易文君-文库范文网

  3.会根据比较简单的条件画出指定的四边形.JvF易文君-文库范文网

  4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.JvF易文君-文库范文网

  (三)德育渗透点JvF易文君-文库范文网

  使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.JvF易文君-文库范文网

  (四)美育渗透点JvF易文君-文库范文网

  通过四边形内角和定理数学,渗透统一美,应用美.JvF易文君-文库范文网

  二、学法引导JvF易文君-文库范文网

  类比、观察、引导、讲解JvF易文君-文库范文网

  三、重点·难点·疑点及解决办法JvF易文君-文库范文网

  1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.JvF易文君-文库范文网

  2.教学难点 :理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.JvF易文君-文库范文网

  3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.JvF易文君-文库范文网

  四、课时安排JvF易文君-文库范文网

  2课时JvF易文君-文库范文网

  五、教具学具准备JvF易文君-文库范文网

  投影仪、胶片、四边形模型、常用画图工具JvF易文君-文库范文网

  六、师生互动活动设计JvF易文君-文库范文网

  教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.JvF易文君-文库范文网

  第2课时JvF易文君-文库范文网

  七、教学步骤 JvF易文君-文库范文网

  【复习提问】JvF易文君-文库范文网

  1.什么叫四边形?四边形的内角和定理是什么?JvF易文君-文库范文网

  2.如图4-9, 求 的度数(打出投影).JvF易文君-文库范文网

  【引入新课】JvF易文君-文库范文网

  前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.JvF易文君-文库范文网

  【讲解新课】JvF易文君-文库范文网

  1.四边形的外角JvF易文君-文库范文网

  与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.JvF易文君-文库范文网

  2.外角和定理JvF易文君-文库范文网

  例1  已知:如图4-11,四边形ABCD的四个内角分别为 ,每一个顶点处有一个外角,设它们分别为 .JvF易文君-文库范文网

  求 .JvF易文君-文库范文网

  (1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).JvF易文君-文库范文网

  (2)教给学生一组外角的画法——同向法.JvF易文君-文库范文网

  即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.JvF易文君-文库范文网

  (3)利用每一个外角与其邻补角的关系及四边形内角和为360°.JvF易文君-文库范文网

  证得:JvF易文君-文库范文网

  360°JvF易文君-文库范文网

  外角和定理:四边形的外角和等于360°JvF易文君-文库范文网

  3.四边形的不稳定性JvF易文君-文库范文网

  ①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?JvF易文君-文库范文网

  (学生回答)JvF易文君-文库范文网

  ②若以 为边作四边形ABCD.JvF易文君-文库范文网

  提示画法:①画任意小于平角的 .JvF易文君-文库范文网

  ②在 的两边上截取 .JvF易文君-文库范文网

  ③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点.JvF易文君-文库范文网

  ④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13.JvF易文君-文库范文网

  大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为 的大小不固定,所以四边形的形状不确定.JvF易文君-文库范文网

  ③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性.JvF易文君-文库范文网

  教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:JvF易文君-文库范文网

  ①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.JvF易文君-文库范文网

  (4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.JvF易文君-文库范文网

  【总结、扩展】JvF易文君-文库范文网

  1.小结:JvF易文君-文库范文网

  (1)四边形外角概念、外角和定理.JvF易文君-文库范文网

  (2)四边形不稳定性的应用和克服不稳定性的理论根据.JvF易文君-文库范文网

  2.扩展:如图4-15,在四边形ABCD中, ,求四边形ABCD的面积JvF易文君-文库范文网

  八、布置作业 JvF易文君-文库范文网

  教材P128中4.JvF易文君-文库范文网

  九、板书设计 JvF易文君-文库范文网

  十、随堂练习JvF易文君-文库范文网

  教材P124中1、2JvF易文君-文库范文网

  补充:(1)在四边形ABCD中, , 是四边形的外角,且 ,则 度.JvF易文君-文库范文网

  (2)在四边形ABCD中,若分别与 相邻的外角的比是1:2:3:4,则 度, 度, 度, 度JvF易文君-文库范文网

  (3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.JvF易文君-文库范文网

多边形的内角和 篇15

  一、    教学目标: JvF易文君-文库范文网

  1.    让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯.JvF易文君-文库范文网

  2.    能灵活的运用多边形内角和与外角和公式解决有关问题.JvF易文君-文库范文网

  二、    教材分析JvF易文君-文库范文网

  本节的主要内容是多边形的外角定义和公式.多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题.为提供三角形的外角提供了一种方法.JvF易文君-文库范文网

  三、    教学重点、难点JvF易文君-文库范文网

  1.    多边形的外角和公式及公式的探索过程.JvF易文君-文库范文网

  2.    能灵活运用多边形的内角和与外角和公式解决有关问题.JvF易文君-文库范文网

  四、    教学建议JvF易文君-文库范文网

  关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°.JvF易文君-文库范文网

  五、    教具、学具准备JvF易文君-文库范文网

  投影仪、题板、画图工具JvF易文君-文库范文网

  六、    教学过程JvF易文君-文库范文网

  1.复习提问:JvF易文君-文库范文网

  (1)      多边形的内角和是多少?JvF易文君-文库范文网

  (2)      正八边形的每一个内角为      度?JvF易文君-文库范文网

  2.创设问题情景,引入新课:JvF易文君-文库范文网

  教师投放课本51页图9-35时,并出示以下问题:JvF易文君-文库范文网

  小明沿一个五边形广场周围的小路,按顺时针方向跑步JvF易文君-文库范文网

  (1)      小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们.JvF易文君-文库范文网

  (2)      观察∠1、∠2、∠3、∠4、∠5的两边分别与它相邻的五边形的内角的边有何关系?JvF易文君-文库范文网

  (3)      问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?JvF易文君-文库范文网

  点拨:JvF易文君-文库范文网

  请填写下题:JvF易文君-文库范文网

  如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α=   ,∠β=     ,∠γ=   ,∠δ=     ∠θ=    .JvF易文君-文库范文网

  因为∠α+∠β+∠γ+∠δ+∠θ=      .JvF易文君-文库范文网

  所以∠1+∠2+∠3+∠4+∠5=       .JvF易文君-文库范文网

  由此可得:五边形的外角和是360°JvF易文君-文库范文网

  (4)      你能借助内角和来推导五边形的外角和吗?JvF易文君-文库范文网

  点拨:JvF易文君-文库范文网

  因五边形的每一个内角与它相邻的外角是邻补角,JvF易文君-文库范文网

  所以五边形的内角和加外角和等于5180°JvF易文君-文库范文网

  所以外角和等于5180°-(5-2)180°=360°JvF易文君-文库范文网

  (5)      你用第二种方法推导下列多边形的外角和JvF易文君-文库范文网

  三角形的外角和       四边形的外角和      五边形的外角和       n边形的外角和是       .JvF易文君-文库范文网

  得出结论:多边形的外角和都等于360°.JvF易文君-文库范文网

  4.应用举例:JvF易文君-文库范文网

  例 一个多边形的内角和等于它的外角和的3倍,它是几边形?JvF易文君-文库范文网

  点拨:JvF易文君-文库范文网

  设出未知数,根据相等关系: 内角和=3外角和列出方程JvF易文君-文库范文网

  5.练习:     JvF易文君-文库范文网

  见学案练习一和练习二JvF易文君-文库范文网

  6.达标检测JvF易文君-文库范文网

  见学案达标检测JvF易文君-文库范文网

  7.小结JvF易文君-文库范文网

  本节课你学到了什么?有什么收获?JvF易文君-文库范文网

  8.作业JvF易文君-文库范文网

  学生口答,并计算出度数JvF易文君-文库范文网

  学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题.JvF易文君-文库范文网

  学生质疑思考,一时找不到方法,可按点拨的引导继续思考.JvF易文君-文库范文网

  生充分思考,认真分析,小组讨论交流得出答案.JvF易文君-文库范文网

  学生找关系,小组积极讨论、交流,小组汇报结果.JvF易文君-文库范文网

  学生独立探究,很快得出答案.JvF易文君-文库范文网

  学生独立解决JvF易文君-文库范文网

  让学生先总结、交流谈体会JvF易文君-文库范文网

多边形的内角和 篇16

  一、教材分析JvF易文君-文库范文网

  1、教材的地位和作用JvF易文君-文库范文网

  本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。JvF易文君-文库范文网

  2、教学重点和难点JvF易文君-文库范文网

  重点:多边形的内角和与外角和JvF易文君-文库范文网

  难点:探索多边形内角和时,如何把多边形转化成三角形。JvF易文君-文库范文网

  二、教学目标分析JvF易文君-文库范文网

  1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。JvF易文君-文库范文网

  2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。JvF易文君-文库范文网

  3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。JvF易文君-文库范文网

  4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。JvF易文君-文库范文网

  三、教法和学法分析JvF易文君-文库范文网

  本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:JvF易文君-文库范文网

  1、教学方法的设计JvF易文君-文库范文网

  我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。JvF易文君-文库范文网

  2、活动的开展JvF易文君-文库范文网

  利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。JvF易文君-文库范文网

  3、现代教育技术的应用JvF易文君-文库范文网

  我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。JvF易文君-文库范文网

  四、教学过程分析JvF易文君-文库范文网

  五、评价分析JvF易文君-文库范文网

  1、注意评价内容的多元化JvF易文君-文库范文网

  通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。JvF易文君-文库范文网

  2、注重对学生学习过程的评价JvF易文君-文库范文网

  在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。JvF易文君-文库范文网

  六、设计说明JvF易文君-文库范文网

  1、指导思想JvF易文君-文库范文网

  根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。JvF易文君-文库范文网

  2、关于教材处理JvF易文君-文库范文网

  本教案设计时,我对教材作了如下改变:①将教材例1作为练习中的“想一想”,由学生自已尝试解答;②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。JvF易文君-文库范文网

  ③作业采取分组竞赛的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。JvF易文君-文库范文网

  以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!JvF易文君-文库范文网

多边形的内角和 篇17

  《多边形的内角和》公开课教案     北京市第五中学 曹自由       JvF易文君-文库范文网

  教学任务分析JvF易文君-文库范文网

  教学目标JvF易文君-文库范文网

  知识与技能JvF易文君-文库范文网

  掌握多边形内角和公式及外角和定理,并能应用.JvF易文君-文库范文网

  过程与方法JvF易文君-文库范文网

  1.经历把多边形内角和问题转化为三角形内角和问题的过程,体会转化思想在几何中的应用,同时体会从特殊到一般的认识问题的方法;JvF易文君-文库范文网

  2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神. JvF易文君-文库范文网

  情感态度价值观JvF易文君-文库范文网

  通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情.JvF易文君-文库范文网

  重点JvF易文君-文库范文网

  多种方法探索多边形内角和公式JvF易文君-文库范文网

  难点JvF易文君-文库范文网

  多边形内角和公式的推导JvF易文君-文库范文网

  教学流程安排JvF易文君-文库范文网

  活动流程JvF易文君-文库范文网

  活动内容和目的JvF易文君-文库范文网

  活动1学生自主探索四边形内角和JvF易文君-文库范文网

  活动2教师引导学生探索总结把四边形转化为三角形添加辅助线的基本方法JvF易文君-文库范文网

  活动3探索n边形内角和公式JvF易文君-文库范文网

  活动4师生共同研究递推法确定n边形内角和公式JvF易文君-文库范文网

  活动5多边形内角和公式的应用JvF易文君-文库范文网

  活动6小结JvF易文君-文库范文网

  作业JvF易文君-文库范文网

  从对三角形及特殊四边形(正方形、长方形)内角和的认识出发,使学生积极参加到探索四边形内角和的活动中.JvF易文君-文库范文网

  加深对转化思想方法的理解, 训练发散思维、培养创新能力.JvF易文君-文库范文网

  通过把多边形转化为三角形体会转化思想,感受从特殊到一般的数学思考方法.JvF易文君-文库范文网

  学生提高动手实操能力、突破“添”的思维局限JvF易文君-文库范文网

  综合运用新旧知识解决问题.JvF易文君-文库范文网

  回顾本节内容,培养学生的归纳概括能力.JvF易文君-文库范文网

  反思总结,巩固提高.JvF易文君-文库范文网

  课前准备JvF易文君-文库范文网

  教具JvF易文君-文库范文网

  学具JvF易文君-文库范文网

  补充材料JvF易文君-文库范文网

  教师用三角尺JvF易文君-文库范文网

  课件JvF易文君-文库范文网

  剪刀JvF易文君-文库范文网

  复印材料JvF易文君-文库范文网

  三角形纸片JvF易文君-文库范文网

  教学过程设计JvF易文君-文库范文网

  问题与情景JvF易文君-文库范文网

  师生行为JvF易文君-文库范文网

  设计意图JvF易文君-文库范文网

  [活动1、2]JvF易文君-文库范文网

  问题1.三角形的内角和是多少?JvF易文君-文库范文网

  与形状有关吗?JvF易文君-文库范文网

  问题2.正方形、长方形的内角和是多少?JvF易文君-文库范文网

  由此你能猜想任意凸四边形内角和吗?JvF易文君-文库范文网

  动脑筋、想办法,说明你的猜想是正确的.JvF易文君-文库范文网

  问题3添加辅助线的目的是什么,方法有没有什么规律呢?JvF易文君-文库范文网

  学生回答:JvF易文君-文库范文网

  三角形内角和是180°,与形状无关;正方形、长方形内角和是360°(4×90°),由此猜想任意凸四边形内角和是360°.JvF易文君-文库范文网

  学生先独立探究,再小组交流讨论.JvF易文君-文库范文网

  教师深入小组指导,倾听学生交流.对于通过测量、拼图说明的,可以引导学生利用添加辅助线的方法把四边形转化为三角形.JvF易文君-文库范文网

  学生汇报结果.JvF易文君-文库范文网

  ①过一个顶点画对角线1条,得到2个三角JvF易文君-文库范文网

  形,内角和为2×180°;JvF易文君-文库范文网

  ②画2条对角线,在四边形内部交于一点,得到4个三角形,内角和为4×180°-360°;JvF易文君-文库范文网

  ③若在四边形内部任取一点,如图,也可以得到相应的结论;JvF易文君-文库范文网

  ④这个点还可以取在边上(若与顶点重合,转化为第一种情况——连接对角线;否则如图4)JvF易文君-文库范文网

  内角和为3×180°-180°;JvF易文君-文库范文网

  ⑤点还可以取在外部,如图5、6.由图5,内角和为3×180°-180°;由图6,内角和为2×180°;JvF易文君-文库范文网

  教师重点关注:①学生能否借助辅助线把四边形分割成几个三角形;②能否借助辅助线找到不同的分割方法.JvF易文君-文库范文网

  教师总结:利用辅助线把四边形的内角和转化为三角形的内角和,体现了化未知为已知的转化思想. .以上这些方法同样适用于探究任意凸多边形的内角和.为方便起见,下面我们可以选用最简单的方法——过一点画多边形的对角线,来探究五边形、六边形,甚至任意n边形的内角和.JvF易文君-文库范文网

  通过回忆三角形的内角和,有助于后续问题的解决.JvF易文君-文库范文网

  从四边形入手,有利于学生探求它与三角形的关系,从而有利于发现转化的思想方法.JvF易文君-文库范文网

  通过动手操作寻找结论,让他们积极参加数学活动、主动思考、合作交流,体验解决问题策略的多样性.JvF易文君-文库范文网

  通过寻求多种方法解决问题,训练学生发散思维能力、培养创新意识.JvF易文君-文库范文网

  [活动3]JvF易文君-文库范文网

  问题4怎样求n边形的内角和?(n是大于等于3的整数)JvF易文君-文库范文网

  学生归纳得出结论:从n边形的一个顶点出发可以引(n-3)条对角线,它们将n边形分割成(n-2)个三角形,(凸)n边形的内角和等于(n-2)×180°.JvF易文君-文库范文网

  特点:内角和都是180°的整数倍.JvF易文君-文库范文网

  通过归纳概括得出任意凸多边形的内角和与边数关系的表达式,体会数形之间的联系,感受从特殊到一般的数学推理过程和数学思想方法.    JvF易文君-文库范文网

  [活动4]JvF易文君-文库范文网

  每名同学发一张三角形纸片JvF易文君-文库范文网

  问题5一张三角形纸片只剪一刀,能不能得到一个四边形,在这一过程中内角发JvF易文君-文库范文网

  《多边形的内角和》公开课生了怎样的变化JvF易文君-文库范文网

  问题6由四边形得到五边形呢?JvF易文君-文库范文网

  依此类推能否猜想n边形内角和公式JvF易文君-文库范文网

  将三角形去掉一个角可以得到四边形,如图7,四边形内角和为JvF易文君-文库范文网

  180°+2×180°-180°=2×180°.JvF易文君-文库范文网

  每个图形都是前一个图形剪去一个三角形,每次操作内角和增加180°,n边形是三角形经过(n-3)次操作得到的,所以n边形内角和公式为(n-2)×180°JvF易文君-文库范文网

  (严谨的证明应在学习数学归纳法后)JvF易文君-文库范文网

  学生突破常规,学会逆向思维,变以往的“把多边形转化成三角形”为“把三角形转化成多边形”同样使问题得到解决JvF易文君-文库范文网

  [活动5]JvF易文君-文库范文网

  知道了凸多边形的内角和,它可以解决哪些问题呢?JvF易文君-文库范文网

  问题6:六边形的外角和等于多少?JvF易文君-文库范文网

  n边形外角和是多少?JvF易文君-文库范文网

  学生自己画图、思考.叙述理由:六边形的六个外角与六个内角构成6个平角,结合内角和公式,因此得到JvF易文君-文库范文网

  6×180°-(6-2)×180°=360°JvF易文君-文库范文网

  学生思考,回答.JvF易文君-文库范文网

  n边形中,每个顶点处的内角与一个外角组成一个平角,它们的和,即n边形内角和与外角和的和为n×180°,而内角和为(n-2)×180°,因此外角和为360°.JvF易文君-文库范文网

  利用内角和求外角和,巩固了内角和公式.   JvF易文君-文库范文网

  如时间允许,此时还可补充利用“转角”求多边形外角和的方法,这样就变成了可以利用外角和来推导内角和,这又是一种逆向思维JvF易文君-文库范文网

  练习JvF易文君-文库范文网

  一个多边形各内角都相等,都等于150°,它的边数是      ,内角和是     .JvF易文君-文库范文网

  练习.解:(n-2)180=150n,n=12;JvF易文君-文库范文网

  或360÷(180-150)=12(利用外角和)JvF易文君-文库范文网

  150°×12=1800°.JvF易文君-文库范文网

  巩固内角和公式,外角和定理.JvF易文君-文库范文网

  [活动5]JvF易文君-文库范文网

  小结JvF易文君-文库范文网

  下面请同学们总结一下这节课你有哪些收获.JvF易文君-文库范文网

  学生自己小结,老师再总结.JvF易文君-文库范文网

  1.       多边形内角和公式(n-2)180°,外角和是360°;JvF易文君-文库范文网

  2.       由特殊到一般的数学方法、转化思想.JvF易文君-文库范文网

  学会总结,培养归纳概括能力.JvF易文君-文库范文网

  作业:JvF易文君-文库范文网

  课后思考题.JvF易文君-文库范文网

  一同学在进行多边形的内角和计算时,求得内角和为1125°,可能吗?JvF易文君-文库范文网

  当他发现错了之后,重新检查,发现少算了一个内角,你能求出这个内角是多少度?他求的是几边形的内角和吗?JvF易文君-文库范文网

  多边形内角和与不等式的综合应用题,一题多解,提高学生的综合应用能力.JvF易文君-文库范文网

  作业:JvF易文君-文库范文网

  解法1.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+xJvF易文君-文库范文网

  x=(n-2)180-1125JvF易文君-文库范文网

  ∵0<x<180JvF易文君-文库范文网

  ∴0<(n-2)180-1125<180JvF易文君-文库范文网

  解得:<n<JvF易文君-文库范文网

  ∵n是整数,JvF易文君-文库范文网

  ∴n=9.JvF易文君-文库范文网

  x=(9-2)180-1125=135JvF易文君-文库范文网

  注:方程(n-2)180=1125+x中有两个未知数,解法1用n表示x,根据x的取值范围解不等式组求出了n;如果用x表示n,你能解出来吗?JvF易文君-文库范文网

  解法2.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+xJvF易文君-文库范文网

  ∵n是整数,JvF易文君-文库范文网

  ∴45+x是180的倍数.JvF易文君-文库范文网

  又∵0<x<180JvF易文君-文库范文网

  ∴45+x=180,x=135,n=9JvF易文君-文库范文网

  还可以根据内角和的特点,先求出内角和.JvF易文君-文库范文网

  解法3.设此多边形的内角和为x°,依题意:1125<x<1125+180JvF易文君-文库范文网

  即:180×6+45<x<180×7+45JvF易文君-文库范文网

  ∵x是多边形内角和的度数JvF易文君-文库范文网

  ∴x是180的倍数JvF易文君-文库范文网

  ∴x=180×7=1260     边数=7+2=9,JvF易文君-文库范文网

  这个内角=1260°-1125°=135°JvF易文君-文库范文网

  解法4(极值法).设这是n边形,这个内角为x°,则0<x<180,依题意:(n-2)180=1125+xJvF易文君-文库范文网

  令x=0,得:n=,令x=180,得:n=JvF易文君-文库范文网

  ∴<n<   其余同解法1.     JvF易文君-文库范文网

  此作品为天津市人教版初中数学课标实验教材研讨会公开课教学设计JvF易文君-文库范文网

精选图文

154802
领取福利

微信扫码领取福利

微信扫码分享